0
Research Papers

Emission of Carbonyl and Polyaromatic Hydrocarbon Pollutants From the Combustion of Liquid Fuels: Impact of Biofuel Blending

[+] Author and Article Information
Philippe Dagaut

CNRS-INSIS ICARE,
1c Avenue de la Recherche Scientifique,
Orléans 45071, France
e-mail: dagaut@cnrs-orleans.fr

Yuri Bedjanian

CNRS-INSIS ICARE,
1c Avenue de la Recherche Scientifique,
Orléans 45071, France
e-mail: yuri.bedjanian@cnrs-orleans.fr

Guillaume Dayma

CNRS-INSIS ICARE,
1c Avenue de la Recherche Scientifique,
Orléans 45071, France
e-mail: guillaume.dayma@cnrs-orleans.fr

Fabrice Foucher

PRISME Université d'Orléans,
8 Rue Léonard de Vinci,
Orléans 45072, France
e-mail: fabrice.foucher@univ-orleans.fr

Benoît Grosselin

CNRS-INSIS ICARE,
1c Avenue de la Recherche Scientifique,
Orléans 45071, France
e-mail: benoit.grosselin@cnrs-orleans.fr

Manolis Romanias

CNRS-INSIS ICARE,
1c Avenue de la Recherche Scientifique,
Orléans 45071, France
e-mail: emmanouil.romanias@imt-lille-douai.fr

Roya Shahla

CNRS-INSIS ICARE,
1c Avenue de la Recherche Scientifique,
Orléans 45071, France
e-mail: roya.shahla@hotmail.com

1Corresponding author.

Manuscript received June 22, 2018; final manuscript received June 27, 2018; published online November 14, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(3), 031028 (Nov 14, 2018) (6 pages) Paper No: GTP-18-1276; doi: 10.1115/1.4040712 History: Received June 22, 2018; Revised June 27, 2018

The combustion of conventional fuels (diesel and Jet A-1) with 10–20% vol oxygenated biofuels (ethanol, 1-butanol, methyl octanoate, rapeseed oil methyl ester (RME), diethyl carbonate, tri(propylene glycol)methyl ether, i.e., CH3(OC3H6)3OH, and 2,5-dimethylfuran (2,5-DMF)) and a synthetic paraffinic kerosene (SPK) was studied. The experiments were performed using an atmospheric pressure laboratory premixed flame and a four-cylinder four-stroke diesel engine operating at 1500 rpm. Soot samples from kerosene blends were collected above a premixed flame for analysis. Polyaromatic hydrocarbons (PAHs) were extracted from the soot samples. After fractioning, they were analyzed by high-pressure liquid chromatography (HPLC) with UV and fluorescence detectors. C1 to C8 carbonyl compounds (CBCs) were collected at the diesel engine exhaust on 2,4-dinitrophenylhydrazine coated cartridges (DNPH) and analyzed by HPLC with UV detection. The data indicated that blending conventional fuels with biofuels has a significant impact on the emission of both CBCs and PAHs adsorbed on soot. The global concentration of 18 PAHs (1-methyl-naphthalene, 2-methyl-naphthalene, and the 16 U.S. priority EPA PAHs) on soot was considerably lowered using oxygenated fuels, except 2,5-DMF. Conversely, the total carbonyl emission increased by oxygenated biofuels blending. Among them, ethanol and 1-butanol were found to increase considerably the emissions of CBCs.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sawyer, R. F. , 2009, “ Science Based Policy for Addressing Energy and Environmental Problems,” Proc. Combust. Inst., 32(1), pp. 45–56. [CrossRef]
Escobar, J. C. , Lora, E. S. , Venturini, O. J. , Yáñez, E. E. , Castillo, E. F. , and Almazan, O. , 2010, “ Biofuels: Environment, Technology and Food Security,” Renewable Sustainable Energy Rev., 13(6–7), pp. 1275–1287.
European Commission, 2011, “ Biofuels Flight Path,” European Commission, Brussels, Belgium, accessed July 1, 2018, https://ec.europa.eu/energy/sites/ener/files/20110622_biofuels_flight_path_launch.pdf
Mzé Ahmed, A. , Dagaut, P. , Hadj-Ali, K. , Dayma, G. , Kick, T. , Herbst, J. , Kathrotia, T. , Braun-Unkhoff, M. , Herzler, J. , Naumann, C. , and Riedel, U. , 2012, “ The Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study,” Energy Fuels, 26(10), pp. 6070–6079. [CrossRef]
Dagaut, P. , Dayma, G. , Dievart, P. , Hadj-Ali, K. , and Mze-Ahmed, A. , 2014, “ Combustion of a Gas-to-Liquid-Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling,” Combust. Sci. Technol., 186(10–11), pp. 1275–1283. [CrossRef]
Dagaut, P. , Karsenty, F. , Dayma, G. , Diévart, P. , Hadj-Ali, K. , Mzé-Ahmed, A. , Braun-Unkhoff, M. , Herzler, J. , Kathrotia, T. , Kick, T. , Naumann, C. , Riedel, U. , and Thomas, L. , 2014, “ Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel,” Combust. Flame, 161(3), pp. 835–847. [CrossRef]
Dagaut, P. , Dayma, G. , Karsenty, F. , and Serinyel, Z. , 2015, “ Combustion of Synthetic Jet Fuels (Gas to Liquid and Coal to Liquid) and Multi-Component Surrogates: Experimental and Modeling Study,” ASME Paper No. GT2015-42004.
Mze-Ahmed, A. , Dagaut, P. , Dayma, G. , and Dievart, P. , 2015, “ Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study,” ASME J. Eng. Gas Turbines Power, 137(1), p. 011503. [CrossRef]
Dagaut, P. , Karsenty, F. , Dayma, G. , and Serinyel, Z. , 2016, “ Experimental and Kinetic Modeling of the Oxidation of Synthetic Jet Fuels and Surrogates,” Combust. Sci. Technol., 188(11–12), pp. 1705–1718. [CrossRef]
Dagaut, P. , and Dievart, P. , 2017, “ Combustion of Synthetic Jet Fuels: Naphthenic Cut and Blend With a Gas-to-Liquid (GtL) Jet Fuel,” Proc. Combust. Inst., 36(1), pp. 433–440. [CrossRef]
Hermann, F. , Klingmann, J. , Gabrielsson, R. , Pedersen, J. R. , Olsson, J. O. , and Owrang, F. , 2006, “ Chemical Analysis of Combustion Products From a High-Pressure Gas Turbine Combustor Rig Fueled by Jet A1 Fuel and a Fischer-Tropsch-Based Fuel,” ASME Paper No. GT2006-90600.
Corporan, E. , DeWitt, M. J. , Belovich, V. , Pawlik, R. , Lynch, A. C. , Gord, J. R. , and Meyer, T. R. , 2007, “ Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer-Tropsch Jet Fuel,” Energy Fuels, 21(5), pp. 2615–2626. [CrossRef]
Huber, M. L. , Smith, B. L. , Ott, L. S. , and Bruno, T. J. , 2008, “ Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve,” Energy Fuels, 22(2), pp. 1104–1114. [CrossRef]
Buchholz, B. A. , Mueller, C. J. , Upatnieks, A. , Martin, G. C. , Pitz, W. J. , and Westbrook, C. K. , 2004, “ Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions From a DI Diesel Engine,” SAE Trans., 113, pp. 846–857.
Ratcliff, M. A. , Burton, J. , Sindler, P. , Christensen, E. , Fouts, L. , Chupka, G. M. , and McCormick, R. L. , 2016, “ Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine,” SAE Int. J. Fuels Lubr., 9(1), pp. 59–70. [CrossRef]
Ratcliff, M. A. , Luecke, J. , Williams, A. , Christensen, E. , Yanowitz, J. , Reek, A. , and McCormick, R. L. , 2013, “ Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions,” Environ. Sci. Technol., 47(23), pp. 13865–13872. [CrossRef] [PubMed]
Seinfeld, J. H. , and Pandis, S. N. , 2006, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, Hoboken, NJ.
US-EPA, 1999, “ Compendium Method to-11A: Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology],” United States Environmental Protection Agency, Cincinnati, OH, Report No. EPA/625/R-96/010b.
Lelièvre, S. , Bedjanian, Y. , Pouvesle, N. , Delfau, J.-L. , and Vovelle, C. G. L. B. , 2004, “ Heterogeneous Reaction of Ozone With Hydrocarbon Flame Soot,” Phys. Chem. Chem. Phys., 6(6), pp. 1181–1191. [CrossRef]
Andrade-Eiroa, A. , Shahla, R. , Romanias, M. N. , and Dagaut, P. , 2014, “ An Alternative to Trial and Error Methodology in Solid Phase Extraction: An Original Automated Solid Phase Extraction Procedure for Analysing PAHs and PAH-Derivatives in Soot,” RSC Adv., 4(63), pp. 33636–33644. [CrossRef]
Guarieiro, L. L. N. , de Souza, A. F. , Torres, E. A. , and de Andrade, J. B. , 2009, “ Emission Profile of 18 Carbonyl Compounds, CO, CO2, and NOx Emitted by a Diesel Engine Fuelled With Diesel and Ternary Blends Containing Diesel, Ethanol and Biodiesel or Vegetable Oils,” Atmos. Environ., 43(17), pp. 2754–2761. [CrossRef]
Song, C. , Zhao, Z. , Lv, G. , Song, J. , Liu, L. , and Zhao, R. , 2010, “ Carbonyl Compound Emissions From a Heavy-Duty Diesel Engine Fueled With Diesel Fuel and Ethanol–Diesel Blend,” Chemosphere, 79(11), pp. 1033–1039. [CrossRef] [PubMed]
Cheung, C. , Di, Y. , and Huang, Z. , 2008, “ Experimental Investigation of Regulated and Unregulated Emissions From a Diesel Engine Fueled With Ultralow-Sulfur Diesel Fuel Blended With Ethanol and Dodecanol,” Atmos. Environ., Part A, 42(39), pp. 1352–2310.
Agarwal, A. K. , 2007, “ Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines,” Prog. Energy Combust. Sci., 33(3), pp. 233–271. [CrossRef]
Tao, T. , Sun, W. , Yang, B. , Hansen, N. , Moshammer, K. , and Law, C. K. , 2017, “ Investigation of the Chemical Structures of Laminar Premixed Flames Fueled by Acetaldehyde,” Proc. Combust. Inst., 36(1), pp. 1287–1294. [CrossRef]
Shahla, R. , Togbe, C. , Thion, S. , Timothee, R. , Lailliau, M. , Halter, F. , Chauveau, C. , Dayma, G. , and Dagaut, P. , 2017, “ Burning Velocities and Jet-Stirred Reactor Oxidation of Diethyl Carbonate,” Proc. Combust. Inst., 36(1), pp. 553–560. [CrossRef]
McEnally, C. S. , and Pfefferle, L. D. , 2005, “ Fuel Decomposition and Hydrocarbon Growth Processes for Oxygenated Hydrocarbons: Butyl Alcohols,” Proc. Combust. Inst., 30(1), pp. 1363–1370. [CrossRef]
McEnally, C. S. , and Pfefferle, L. D. , 2011, “ Sooting Tendencies of Oxygenated Hydrocarbons in Laboratory-Scale Flames,” Environ. Sci. Technol., 45(6), pp. 2498–2503. [CrossRef] [PubMed]
Pepiot-Desjardins, P. , Pitsch, H. , Malhotra, R. , Kirby, S. R. , and Boehman, A. L. , 2008, “ Structural Group Analysis for Soot Reduction Tendency of Oxygenated Fuels,” Combust. Flame, 154(1–2), pp. 191–205. [CrossRef]
Nisbet, I. C. T. , and Lagoy, P. K. , 1992, “ Toxic Equivalency Factors (TEFS) for Polycyclic Aromatic-Hydrocarbons (PAHs),” Regul. Toxicol. Pharmacol., 16(3), pp. 290–300. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 5

Individual carbonyl compounds emissions from the different fuels tested

Grahic Jump Location
Fig. 4

Contribution of each carbonyl compound to total emissions of the fuels considered here

Grahic Jump Location
Fig. 3

Total emission of carbonyl compounds

Grahic Jump Location
Fig. 2

Schematic representation of the apparatus used for soot production and deposition

Grahic Jump Location
Fig. 6

Polyaromatic hydrocarbons relative abundance in the analyzed soot extracts. Small PAHs: MW = 128.17–166.22 g/mol; Medium PAHs: MW = 178.23–228.29 g/mol; Large PAHs: MW = 252.31–276.33 g/mol.

Grahic Jump Location
Fig. 1

Schematic representation of the CBCs sampling system used from engine measurements

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In