0
research-article

Direct Assessment of the Acoustic Scattering Matrix of a Turbulent Swirl Combustor by Combining System Identification, Large Eddy Simulation and Analytical Approaches

[+] Author and Article Information
Malte Merk

Fakultät für Maschinenwesen, Technische Universität München, Garching, Germany 85747
merk@tfd.mw.tum.de

Camilo Silva

Fakultät für Maschinenwesen, Technische Universität München, Garching, Germany 85747
silva@tfd.mw.tum.de

Wolfgang Polifke

Fakultät für Maschinenwesen, Technische Universität München, Garching, Germany 85747
polifke@tum.de

Renaud Gaudron

Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
renaud.gaudron@centralesupelec.fr

Marco Gatti

Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
marco.gatti@centralesupelec.fr

Clement Mirat

Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris Saclay, 3, rue Joliot Curie, 91192 Gif-sur-Yvette cedex, France
clement.mirat@ecp.fr

Thierry Schuller

Institut de Mécanique des Fluides, Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
thierry.schuller@imft.fr

1Corresponding author.

ASME doi:10.1115/1.4040731 History: Received June 22, 2018; Revised June 29, 2018

Abstract

This study assesses and compares two alternative approaches to determine the acoustic scattering matrix of a premixed turbulent swirl combustor: 1) The acoustic scattering matrix coefficients are obtained directly from a compressible Large Eddy Simulation (LES). Specifically, the incoming and outgoing characteristic waves f and g extracted from the LES are used to determine the respective transmission and reflection coefficients via System Identification techniques. 2) The flame transfer function (FTF) is identified from LES time series data of upstream velocity and heat release rate. The transfer matrix of the reactive combustor is then derived by combining the FTF with the Rankine-Hugoniot relations across a compact heat source and a transfer matrix of the cold combustor, which is deduced from a linear network model. Linear algebraic transformation of the transfer matrix consequently yields the combustor scattering matrix. A cross-comparison study that includes comprehensive experimental data shows that both approaches successfully predict the scattering matrix of the reactive turbulent swirl combustor.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In