Research Papers

Direct Assessment of the Acoustic Scattering Matrix of a Turbulent Swirl Combustor by Combining System Identification, Large Eddy Simulation and Analytical Approaches

[+] Author and Article Information
Malte Merk

Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85747, Germany
e-mail: merk@tfd.mw.tum.de

Camilo Silva, Wolfgang Polifke

Fakultät für Maschinenwesen,
Technische Universität München,
Garching 85747, Germany

Renaud Gaudron, Marco Gatti, Clément Mirat

Laboratoire EM2C, CNRS,
Université Paris Saclay,
3, rue Joliot Curie,
Gif-sur-Yvette cedex 91192, France

Thierry Schuller

Institut de Mécanique des
Fluides Toulouse (IMFT),
Université de Toulouse,
Toulouse 31062, France

1Corresponding author.

Manuscript received June 22, 2018; final manuscript received June 29, 2018; published online November 14, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(2), 021035 (Nov 14, 2018) (9 pages) Paper No: GTP-18-1280; doi: 10.1115/1.4040731 History: Received June 22, 2018; Revised June 29, 2018

This study assesses and compares two alternative approaches to determine the acoustic scattering matrix of a premixed turbulent swirl combustor: (1) The acoustic scattering matrix coefficients are obtained directly from a compressible large eddy simulation (LES). Specifically, the incoming and outgoing characteristic waves f and g extracted from the LES are used to determine the respective transmission and reflection coefficients via System Identification (SI) techniques. (2) The flame transfer function (FTF) is identified from LES time series data of upstream velocity and heat release rate. The transfer matrix of the reactive combustor is then derived by combining the FTF with the Rankine–Hugoniot (RH) relations across a compact heat source and a transfer matrix of the cold combustor, which is deduced from a linear network model. Linear algebraic transformation of the transfer matrix consequently yields the combustor scattering matrix. In a cross-comparison study that includes comprehensive experimental data, it is shown that both approaches successfully predict the scattering matrix of the reactive turbulent swirl combustor.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Lefebvre, A. H. , 1999, Gas Turbine Combustion, 2nd ed., Taylor & Francis, Philadelphia, PA.
Munjal, M. L. , 2014, Acoustics of Ducts and Mufflers, 2nd ed., Wiley, Chichester, UK.
Su, J. , Rupp, J. , Garmory, A. , and Carrotte, J. , 2015, “ Measurements and Computational Fluid Dynamics Predictions of the Acoustic Impedance of Orifices,” J. Sound Vib., 352, pp. 174–191. [CrossRef]
Sovardi, C. , Aurégan, Y. , and Polifke, W. , 2016, “ Parametric LES/SI Based Aeroacoustic Characterization of Tandem Orifices in Low Mach Number Flows,” Acta Acust. Acust., 102(5), pp. 793–803. [CrossRef]
Andreini, A. , Bianchini, C. , Facchini, B. , Peschiulli, A. , and Vitale, I. , 2012, “ LES for the Evaluation of Acoustic Damping of Effusion Plates,” ASME Paper No. GT2012-68792.
Yoon, C. , Graham, O. , Han, F. , Kim, K. , Maxted, K. , Caley, T. , and Lee, J. G. , 2017, “ LES-Based Scattering Matrix Method for Low-Order Acoustic Network Models,” ASME Paper No. GT2017-65123.
Gikadi, J. , Ullrich, W. C. , Sattelmayer, T. , and Turrini, F. , 2013, “ Prediction of the Acoustic Losses of a Swirl Atomizer Nozzle Under Non-Reactive Conditions,” ASME Paper No. GT2013-95449.
Ni, F. , Miguel-Brebion, M. , Nicoud, F. , and Poinsot, T. , 2017, “ Accounting for Acoustic Damping in a Helmholtz Solver,” AIAA J., 55(4), pp. 1205–1220. [CrossRef]
Keller, J. J. , 1995, “ Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines,” AIAA J., 33(12), pp. 2280–2287. [CrossRef]
Dowling, A. P. , 1995, “ The Calculation of Thermoacoustic Oscillation,” J. Sound Vib., 180(4), pp. 557–581. [CrossRef]
Polifke, W. , Paschereit, C. O. , and Döbbeling, K. , 2001, “ Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit,” Int. J. Acoust. Vib., 6(3), pp. 135–146.
Schuermans, B. , Bellucci, V. , Guethe, F. , Meili, F. , Flohr, P. , and Paschereit, O. , 2004, “ A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame,” ASME Paper No. GT2004-53831.
Bothien, M. , Lauper, D. , Yang, Y. , and Scarpato, A. , 2017, “ Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations,” ASME Paper No. GT2017-64188.
Alemela, P. R. , Fanaca, D. , Ettner, F. , Hirsch, C. , Sattelmayer, T. , and Schuermans, B. , 2008, “ Flame Transfer Matrices of a Premixed Flame and a Global Check With Modelling and Experiments,” ASME Paper No. GT2008-50111.
Laera, D. , Gentile, A. , Camporeale, S. M. , Bertolotto, E. , Rofi, L. , and Bonzani, F. , 2015, “ Numerical and Experimental Investigation of Thermo–Acoustic Combustion Instability in a Longitudinal Combustion Chamber: Influence of the Geometry of the Plenum,” ASME Paper No. GT2015-42322.
Silva, C. F. , Merk, M. , Komarek, T. , and Polifke, W. , 2017, “ The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame,” Combust. Flame, 182, pp. 269–278. [CrossRef]
Paschereit, C. O. , and Polifke, W. , 1998, “ Investigation of the Thermo-Acoustic Characteristics of a Lean Premixed Gas Turbine Burner,” ASME Paper No. 98-GT-582.
Paschereit, C. O. , Schuermans, B. B. H. , Polifke, W. , and Mattson, O. , 2002, “ Measurement of Transfer Matrices and Source Terms of Premixed Flames,” ASME J. Eng. Gas Turbines Power, 124(2), pp. 239–247. [CrossRef]
Gentemann, A. , and Polifke, W. , 2007, “ Scattering and Generation of Acoustic Energy by a Premix Swirl Burner,” ASME Paper No. GT2007-27238.
Candel, S. , Durox, D. , Schuller, T. , Bourgouin, J. F. , and Moeck, J. P. , 2014, “ Dynamics of Swirling Flames,” Annu. Rev. Fluid Mech., 46(1), pp. 147–173. [CrossRef]
Polifke, W. , Poncet, A. , Paschereit, C. O. , and Döbbeling, K. , 2001, “ Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics,” J. Sound Vib., 245(3), pp. 483–510. [CrossRef]
Polifke, W. , 2014, “ Black-Box System Identification for Reduced Order Model Construction,” Ann. Nucl. Energy, 67C, pp. 109–128. [CrossRef]
Fischer, A. , Hirsch, C. , and Sattelmayer, T. , 2006, “ Comparison of Multi-Microphone Transfer Matrix Measurements With Acoustic Network Models of Swirl Burners,” J. Sound Vib., 298(1–2), pp. 73–83. [CrossRef]
Chung, J. Y. , and Blaser, D. A. , 1980, “ Transfer Function Method of Measuring In-Duct Acoustic Properties—II: Experiment,” J. Acoust. Soc. Am., 68(3), pp. 914–921. [CrossRef]
Guedra, M. , Penelet, G. , Lotton, P. , and Dalmont, J. , 2011, “ Theoretical Prediction of the Onset of Thermoacoustic Instability From the Experimental Transfer Matrix of a Thermoacoustic Core,” J. Acoust. Soc. Am., 130(1), pp. 145–152. [CrossRef] [PubMed]
Giauque, A. , Selle, L. , Gicquel, L. , Poinsot, T. , Buechner, H. , Kaufmann, P. , and Krebs, W. , 2005, “ System Identification of a Large-Scale Swirled Partially Premixed Combustor Using LES and Measurements,” J. Turbul., 6, pp. 1–21. [CrossRef]
Tay-Wo-Chong, L. , Bomberg, S. , Ulhaq, A. , Komarek, T. , and Polifke, W. , 2012, “ Comparative Validation Study on Identification of Premixed Flame Transfer Function,” ASME J. Eng. Gas Turbines Power, 134(2), p. 021502. [CrossRef]
CERFACS and IMFT, 2008, “ The AVBP HandBook,” Cerfacs, Toulouse, France, accessed Oct. 10, 2017, http://www.cerfacs.fr/avbp6x/
Nicoud, F. , and Ducros, F. , 1999, “ Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor,” Flow Turbul. Combust., 62(3), pp. 183–200. [CrossRef]
Colin, O. , Ducros, F. , Veynante, D. , and Poinsot, T. , 2000, “ A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion,” Phys. Fluids, 12(7), pp. 1843–1863. [CrossRef]
Polifke, W. , Wall, C. , and Moin, P. , 2006, “ Partially Reflecting and Non-Reflecting Boundary Conditions for Simulation of Compressible Viscous Flow,” J. Comput. Phys., 213(1), pp. 437–449. [CrossRef]
Merk, M. , Gaudron, R. , Gatti, M. , Mirat, C. , Schuller, T. , and Polifke, W. , 2018, “ Measurement and Simulation of Combustion Noise and Dynamics of a Confined Swirl Flame,” AIAA J., 56(5), pp. 1930–1942.
Yang, Y. , Noiray, N. , Scarpato, A. , Schulz, O. , Düsing, K. M. , and Bothien, M. , 2015, “ Numerical Analysis of the Dynamic Flame Response in Alstom Reheat Combustion Systems,” ASME Paper No. GT2015-42622.
Innocenti, A. , Andreini, A. , and Facchini, B. , 2015, “ Numerical Identification of a Premixed Flame Transfer Function and Stability Analysis of a Lean Burn Combustor,” Energy Procedia, 82, pp. 358–365. [CrossRef]
Kopitz, J. , Bröcker, E. , and Polifke, W. , 2005, “ Characteristics-Based Filter for Identification of Planar Acoustic Waves in Numerical Simulation of Turbulent Compressible Flow,” 12th International Congress on Sound and Vibration (ICSV12), Lisbon, Portugal, July 11–14.
Dowling, A. P. , and Stow, S. R. , 2003, “ Acoustic Analysis of Gas Turbine Combustors,” J. Propul. Power, 19(5), pp. 751–764. [CrossRef]
Li, J. , and Morgans, A. S. , 2015, “ Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach,” J. Sound Vib., 346, pp. 345–360. [CrossRef]
Emmert, T. , Jaensch, S. , Sovardi, C. , and Polifke, W. , 2014, “ TaX—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain,” 7th Forum Acusticum, Krakow, Poland, Sept., pp. 7–12.
Bothien, M. , Moeck, J. , Lacarelle, A. , and Paschereit, C. O. , 2007, “ Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems,” Proc. Inst. Mech. Eng., Part A, 221(5), pp. 657–668. [CrossRef]
Lieuwen, T. C. , 2012, Unsteady Combustor Physics, Cambridge University Press, New York.


Grahic Jump Location
Fig. 3

Sketch of the EM2C turbulent swirl combustor. Dimensions are given in millimeter.

Grahic Jump Location
Fig. 1

Example of fragmenting a combustor into its acoustic elements

Grahic Jump Location
Fig. 4

Radial swirler geometry

Grahic Jump Location
Fig. 2

Representation in terms of transfer matrix (left) and scattering matrix (right)

Grahic Jump Location
Fig. 5

Forcing signal: time series (left) and spectral distributions (right)

Grahic Jump Location
Fig. 7

Comparison between measured FTF with respective error bars and FTF from LES/SI . The shaded area represents the 95% confidence interval of the identified FTF.

Grahic Jump Location
Fig. 8

Combustor scattering matrix for cold conditions. Experiment , direct LES approach , passive ROM and passive ROM without swirler . (a) S11, (b) S12, (c) S21, and (d) S22.

Grahic Jump Location
Fig. 9

Combustor scattering matrix for hot conditions. Experiment , direct LES approach and FTF+ROM and ROM with passive flame . The shaded areas describe the 95% confidence interval of the respective numerical approach. (a) S11, (b) S12, (c) S21, and (d) S22.

Grahic Jump Location
Fig. 6

Reduced order model: the swirler is replaced by an identified scattering matrix



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In