0
research-article

QUANTIFICATION OF THE IMPACT OF UNCERTAINTIES IN OPERATING CONDITIONS ON THE FLAME TRANSFER FUNCTION WITH NON-INTRUSIVE POLYNOMIAL CHAOS EXPANSION

[+] Author and Article Information
Alexander Avdonin

Technische Universität München, Fakultät für Maschinenwesen, Garching b. München 85748, Germany
avdonin@tfd.mw.tum.de

Wolfgang Polifke

Technische Universität München, Fakultät für Maschinenwesen, Garching b. München 85748, Germany
polifke@tfd.mw.tum.de

1Corresponding author.

ASME doi:10.1115/1.4040745 History: Received June 26, 2018; Revised June 28, 2018

Abstract

Non-intrusive polynomial chaos expansion (NIPCE) is used to quantify the impact of uncertainties in operating conditions on the flame transfer function of a premixed laminar flame. NIPCE requires only a small number of system evaluations, so it can be applied in cases where a Monte Carlo simulation is unfeasible. We consider three uncertain operating parameters: inlet velocity, burner plate temperature, and equivalence ratio. The flame transfer function (FTF) is identified in terms of the finite impulse response from CFD simulations with broadband velocity excitation. NIPCE yields uncertainties in the FTF due to the uncertain operating conditions. For the chosen uncertain operating bounds, a second-order expansion is found to be sufficient to represent the resulting uncertainties in the FTF with good accuracy. The effect of each operating parameter on the FTF is studied using Sobol indices, i.e. a variance-based measure of sensitivity, which are computed from the NIPCE. It is observed that in the present case uncertainties in the finite impulse response as well as in the phase of the FTF are dominated by the equivalence-ratio uncertainty. For frequencies below 150 Hz, the uncertainty in the gain of the FTF is also attributable to the uncertainty in equivalence-ratio, but for higher frequencies the uncertainties in velocity and temperature dominate. At last, we adopt the polynomial approximation of the output quantity, provided by the NIPCE method, for further UQ studies with modified input uncertainties.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In