Research Papers

Design and Application of a Multidisciplinary Predesign Process for Novel Engine Concepts

[+] Author and Article Information
Stanislaus Reitenbach

German Aerospace Center,
Institute of Propulsion Technology,
Linder Hoehe,
Cologne D-51147, Germany
e-mail: stanislaus.reitenbach@dlr.de

Alexander Krumme

German Aerospace Center,
Institute of Propulsion Technology,
Linder Hoehe,
Cologne D-51147, Germany
e-mail: alexander.krumme@dlr.de

Thomas Behrendt

German Aerospace Center,
Institute of Propulsion Technology,
Linder Hoehe,
Cologne D-51147, Germany
e-mail: thomas.behrendt@dlr.de

Markus Schnös

German Aerospace Center,
Institute of Propulsion Technology,
Linder Hoehe,
Cologne D-51147, Germany
e-mail: markus.schnoes@dlr.de

Thomas Schmidt

German Aerospace Center,
Institute of Structures and Design,
Pfaffenwaldring 38-40,
Stuttgart D-70569, Germany
e-mail: thomas.schmidt@dlr.de

Sandrine Hönig

German Aerospace Center,
Institute of Structures and Design,
Pfaffenwaldring 38-40,
Stuttgart D-70569, Germany
e-mail: sandrine.hoenig@dlr.de

Robert Mischke

German Aerospace Center,
Simulation and Software Technology,
Linder Hoehe,
Cologne D-51147, Germany
e-mail: thomas.behrendt@dlr.de

Erwin Mörland

German Aerospace Center,
Institute of Systems
Architectures in Aeronautics,
Hein-Saß-Weg 22,
Hamburg D-21129, Germany
e-mail: erwin.moerland@dlr.de

1Corresponding author.

Manuscript received June 26, 2018; final manuscript received June 29, 2018; published online September 17, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(1), 011017 (Sep 17, 2018) (11 pages) Paper No: GTP-18-1359; doi: 10.1115/1.4040750 History: Received June 26, 2018; Revised June 29, 2018

The purpose of this paper is to present a multidisciplinary predesign process and its application to three aero-engine models. First, a twin spool mixed flow turbofan engine model is created for validation purposes. The second and third engine models investigated comprise future engine concepts: a counter rotating open rotor (CROR) and an ultrahigh bypass turbofan. The turbofan used for validation is based on publicly available reference data from manufacturing and emission certification. At first, the identified interfaces and constraints of the entire predesign process are presented. An important factor of complexity in this highly iterative procedure is the intricate data flow, as well as the extensive amount of data transferred between all involved disciplines and among different fidelity levels applied within the design phases. To cope with the inherent complexity, data modeling techniques have been applied to explicitly determine required data structures of those complex systems. The resulting data model characterizing the components of a gas turbine and their relationships in the design process is presented in detail. Based on the data model, the entire engine predesign process is presented. Starting with the definition of a flight mission scenario and resulting top level engine requirements, thermodynamic engine performance models are developed. By means of these thermodynamic models, a detailed engine component predesign is conducted. The aerodynamic and structural design of the engine components are executed using a stepwise increase in level of detail and are continuously evaluated in context of the overall engine system.

Copyright © 2019 by ASME
Topics: Engines , Design
Your Session has timed out. Please sign back in to continue.


Moerland, E. , Pfeiffer, T. , Böhnke, D. , Jepsen, J. , Freund, S. , Liersch, C.-M. , Chiozzotto, G.-P. , Klein, C. , Scherer, J. , and Hasan, Y.-J. , 2017, “ On the Design of a Strut-Braced Wing Configuration in a Collaborative Design Environment,” AIAA Paper No. 2017-4397.
Moerland, E. , Becker, R.-G. , and Nagel, B. , 2015, “ Collaborative Understanding of Disciplinary Correlations Using a Low-Fidelity Physics-Based Aerospace Toolkit,” CEAS Aeronaut. J., 6(3), pp. 441–454. [CrossRef]
German Aerospace Center (DLR), 2017, “ Systems Architectures in Aeronautics,” CPACS, Hamburg, Germany, accessed Sept. 1, 2017, https://www.dlr.de/lk/desktopdefault.aspx/tabid-4469/7258_read-39713/
Schaber, R. , 2001, “ Numerische Auslegung und Simulation von Gasturbinen,” Ph.D. thesis, Munich, Germany.
Jeschke, P. , Kurzke, J. , Schaber, R. , and Riegler, C. , 2004, “ Preliminary Gas Turbine Design Using the Multidisciplinary Design System MOPEDS,” ASME J. Eng. Gas Turbines Power, 126(2), pp. 258–264. [CrossRef]
Kupijai, P. , 2014, “ Ein Beitrag zur automatisierten Triebwerksvorauslegung,” Ph.D. thesis, Shaker Verlag, Aachen, Germany.
Mattingly, J.-D. , Heiser, W.-H. , and Prat, D.-T. , 2002, “ Aircraft Engine Design,” AIAA Education Series, 2nd ed., American Institute of Aeronautics & Astronautics, Reston, VA.
Claus, R.-W. , Evans, A.-L. , Lylte, J.-K. , and Nichols, L.-D. , 1991, “ Numerical Propulsion System Simulation,” Comput. Syst. Eng., 2(4), pp. 357–364. [CrossRef]
Rumbaugh, J. , Jacobson, I. , and Booch, G. , 1999, The Unifed Modeling Language Reference Manual (Addison-Wesley Object Technology Series), Addison-Wesley, Boston, MA.
Reitenbach, S. , Schnoes, M. , Becker, R.-G. , and Otten, T. , 2015, “ Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation,” ASME Paper No. GT2015-42832.
Klein, C. , Reitenbach, S. , Schoenweitz, D. , and Wolters, F. , 2017, “ A Fully Coupled Approach for the Integration of 3D-CFD Component Simulation in Overall Engine Performance Analysis,” ASME Paper No. GT2017-63591.
Voss, C. , and Nicke, E. , 2008, “ Automatische Optimierung von Verdichterstufen,” Fachlicher Abschlussbericht Forschungsvorhaben, FKZ: 0327713B, AG Turbo COOREFF-T.
Seider, D. , Basermann, A. , Mischke, R. , Siggel, M. , Tröltzsch, A. , and Zur, S. , 2013, “ Ad hoc Collaborative Design With Focus on Iterative Multidisciplinary Process Chain Development Applied to Thermal Management of Spacecraft,” Fourth CEAS Air and Space Conference, Linköping, Sweden, Sept. 16–19.
Becker, R.-G. , Wolters, F. , Nauroz, M. , and Otten, T. , 2011, “ Development of a Gas Turbine Performance Code and Its Application to Preliminary Engine Design,” Deutscher Luft- und Raumfahrt Kongress (DLRK 2011), Bremen, Deutschland, Sept. 27–29, Paper No. DLRK2011-241485 https://elib.dlr.de/73232/.
Becker, R.-G. , Reitenbach, S. , Klein, C. , Nauroz, M. , and Siggel, M. , 2015, “ An Integrated Method for Propulsion System Conceptual Design,” ASME Paper No. GT2015-43251.
Schmitz, A. , Aulich, M. , Schönweitz, D. , and Nicke, E. , 2012, “ Novel Performance Prediction of a Transonic 4.5-Stage Compressor,” ASME Paper No. GT2012-69003.
Schnoes, M. , and Nicke, E. , 2015, “ Automated Calibration of Compressor Loss and Deviation Correlations,” ASME Paper No. GT2015-42644.
Drela, M. , and Youngren, H. , 1998, “ A User's Guide to MISES 2.53,” MIT Aerospace Computational Design Laboratory, Cambridge, MA.
Tietz, S. , and Behrendt, T. , 2011, “ Development and Application of a Pre-Design Tool for Aero Engine Combustors,” CEAS Aeronaut. J., 2(1–4), pp. 111–123. [CrossRef]
Aumeier, T. , and Behrendt, T. , 2015, “ Application of an Aerothermal Model for the Effusion Cooling Systems and Finite Rate Chemistry in Aero-Engine Combustors,” Turbulence Heat and Mass Transfer, Vol. 8, Begel House Inc., Danbury, CT.
Corman, G. , and Luthra, K. , 2005, “ Silicon Melt Infiltrated Ceramic Composites (HiPerComp™),” Handbook of Ceramic Composites, Springer, Boston, MA, pp. 99–115.
Shi, Y. , Jain, N. , Jemmali, R. , Hofmann, S. , Koch, D. , and Hackemann, S. , 2015, “ Prediction of Elastic Properties for a Wound Oxide Ceramic Matrix Composite Material,” Int. J. Appl. Ceram. Technol., 12(S3), pp. E99–E110. [CrossRef]
Shi, Y. , 2017, “ Characterization and Modeling of the Mechanical Properties of Wound Oxide Ceramic Composites,” Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany.
Jain, N. , and Shi, Y. , 2014, “ Evaluation and FE-Implementation of Failure Criteria for an Oxide Wound CMC at Sample and Component Level,” Master's thesis, Universität Stuttgart, Stuttgart, Germany. https://elib.dlr.de/94259/
Gerendás, M. , Cadoret, Y. , Wilhelmi, C. , Machry, T. , Knoche, R. , Behrendt, T. , Aumeier, T. , Denis, S. , Go¨ring, J.-R. , and Koch, D. , 2011, “ Improvement of Oxide/Oxide CMC and Development of Combustor and Turbine Components in the HIPOC Program,” ASME Paper No. GT2011-45460.
Gerendás, M. , Wilhelmi, C. , Machry, T. , Knoche, R. , Werth, E. , Behrendt, T. , Koch, D. , Hofmann, S. , Göring, J. , and Tushtev, K. , 2013, “ Development and Validation of Oxide/Oxide CMC Combustors Within the HiPOC Program,” ASME Paper No. GT2013-94679.
Hönig, S. , Hofmann, S. , and Koch, D. , 2015, “ Structural Analysis of a CMC Liner Within the HIPOC Project,” 90th DKG Annual Conference and Symposium on High-Performance Ceramics, Bayreuth, Deutschland, Mar. 15–19. https://elib.dlr.de/99448/
Krumme, A. , 2016, “ Performance Prediction and Early Design Code for Axial Turbines and Its Application in Research and Predesign,” ASME Paper No. GT2016-56082.
Giles, M.-B. , and Drela, M. , 1987, “ Parametric Interturbine Duct Design and Optimisation,” AIAA Paper No. 87-0424.
Aulich, M. , Voss, C. , and Raitor, T. , 2014, “ Optimization Strategies Demonstrated on a Transonic Centrifugal Compressor,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, Feb. 24–28 https://elib.dlr.de/96309/.
Voss, C. , Aulich, M. , and Raitor, T. , 2014, “ Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, Feb. 24–28.
Krumme, A. , 2016, “ Konzeption, Implementierung und Anwendung eines automatisierten aerothermodynamischen Vorentwurfsprozesses für Axialturbinen,” Ph.D. thesis, University of Kassel, Kassel, Germany.
Heermann, K.-F. , McClure, K.-R. , and Eriksson, R.-H. , 1977, “ Study to Improve Engine Rotor Blade Containment,” U.S. Department of Transportation, Federal Aviation Administration, Washington, DC, No. FAA-RD-767-100.
Wörrlein, K. , 1995, “ Die Berechnung der Spannungen in Dünnen Scheiben infolge von Rotation und Temperaturgradienten,” Technische Universität Darmstadt, Fachgebiet Gasturbinen und Flugantriebe, Darmstadt, Germany.
ICAO, 1993, “ ICAO Aircraft Engine Emissions Databank,” Annex 16 to the Convention on International Civil Aviation, Volume II, Aircraft Engine Emissions, 2nd ed., International Civil Aviation Organization, Montreal, QC, Canada, accessed July 16, 2018, http://www.easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank
Schnell, R. , Ebel, P.-B. , and Becker, R.-G. S. D. , 2013, “ Performance Analysis of the Integrated V2527-Engine Fan at Ground Operation,” 13th Onera DLR Aerospace Symposium (ODAS), Palaiseau, France, Mar. 27–29. https://elib.dlr.de/82689/
Sagerser, D. , Lieblein, S. , and Krebs, R. , 1971, “ Empirical Expressions for Estimating Length and Weight of Axial-Flow Components of VTOL Powerplant,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TM-X-2406. https://ntrs.nasa.gov/search.jsp?R=19720005136
Jackson, A. , 2009, “ Optimisation of Aero and Industrial Gas Turbine Design for the Environment,” Ph.D. thesis, Cranfield University, Cranfield, UK. https://dspace.lib.cranfield.ac.uk/handle/1826/4316
Grieb, H. , 2004, Projektierung von Turboflugtriebwerken, Birkhäuser, Basel, Switzerland.
Lengyel-Kampmann, T. , Otten, T. , Schmidt, T. , and Nicke, E. , 2015, “ Optimization of an Engine With a Gear Driven Counter Rotating Fan—Part I: Fan Performance and Design,” 22nd International Symposium on Air Breathing Engines (ISABE), Phoenix, AZ, Oct. 25–30, Paper No. ISABE-2015-20091. https://drc.libraries.uc.edu/handle/2374.UC/745696?value=Compressors%20axial%20and%20centripetal%20turbines:%20Axial%20and%20centrifugal%20compressors&type=subject&ztype=subject&focusscope=2374.UC/659492&mode=browse
Otten, T. , Lengyel-Kampmann, T. , Becker, R. , and Reitenbach, S. , 2015, “ Optimization of an Engine With a Gear Driven Counter Rotating Fan—Part II: Cycle Selection and Performance,” 22nd International Symposium on Air Breathing Engines (ISABE), Phoenix, AZ, Oct. 25–30, Paper No. ISABE-2015-20090. https://elib.dlr.de/101125/


Grahic Jump Location
Fig. 1

Schematic representation of the PEGASUS design process and the participating disciplines

Grahic Jump Location
Fig. 2

Basic aspects of designing complex systems

Grahic Jump Location
Fig. 3

Simplified UML representation of a compressor system

Grahic Jump Location
Fig. 4

DLR compressor predesign process and tools

Grahic Jump Location
Fig. 5

COSMA processed data: temperature and Tsai-Wu safety factor distribution on the outer face of the tubular WHIPOX combustor

Grahic Jump Location
Fig. 6

DLR turbine predesign process and tools

Grahic Jump Location
Fig. 7

Shaft design path with ShaftFEM

Grahic Jump Location
Fig. 8

Turbofan engine cross section displayed in GTlab

Grahic Jump Location
Fig. 9

Final 3D CAD model of the turbofan engine

Grahic Jump Location
Fig. 10

Final 3D CAD model of the CROR engine

Grahic Jump Location
Fig. 11

Final 3D CAD model of the UHBR engine



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In