0
Research Papers

Surrogate Fuels Formulation for FACE Gasoline Using the Nuclear Magnetic Resonance Spectroscopy

[+] Author and Article Information
Jin Yu

School of Power Engineering,
Chongqing University,
Chongqing 400044, China

Xiaolong Gou

School of Power Engineering,
Chongqing University,
Chongqing 400044, China
e-mail: simgxl@cqu.edu.cn

1Corresponding author.

Manuscript received August 7, 2017; final manuscript received July 5, 2018; published online December 4, 2018. Assoc. Editor: Eric Petersen.

J. Eng. Gas Turbines Power 141(4), 041019 (Dec 04, 2018) (8 pages) Paper No: GTP-17-1440; doi: 10.1115/1.4040808 History: Received August 07, 2017; Revised July 05, 2018

An efficient surrogate fuel formulation methodology, which directly uses the chemical structure information from nuclear magnetic resonance (NMR) spectroscopy analysis, has been proposed. Five functional groups, paraffinic CH2, paraffinic CH3, aromatic C-CH, olefinic CH-CH2, and cycloparaffin CH2, have been selected to show the basic molecular structure of the fuels for the advanced combustion engines (FACE) fuels. A palette that contains six candidate components, n-heptane, iso-octane, toluene, 2,5-dimethylhexane, methylcyclohexane, and 1-hexene, is chosen for different FACE fuels, based on the consideration that surrogate mixtures should provide the representative functional groups and comparable molecular sizes. The kinetic mechanisms of these six candidate components are chosen to assemble a detailed mechanism of each surrogate fuel for FACE gasoline. Whereafter, the accuracy of FACE A and F surrogate models was demonstrated by comparing the model predictions against experimental data in homogeneous ignition, jet stirred reactor oxidation, and premixed flame.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Edwards, T. , and Maurice, L. Q. , 2001, “ Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels,” J. Propul. Power, 17(2), pp. 461–466. [CrossRef]
Narayanaswamy, K. , Pepiot, P. , and Pitsch, H. , “ Jet Fuels and Fischer-Tropsch Fuels: Surrogate Definition and Chemical Kinetic Modeling,” U.S. National Combustion Meeting, Salt Lake City, UT, May 19–22, Paper No. 070RK-0273. https://sutherland.che.utah.edu/USCI2013/PAPERS/3B01-070RK-0273.pdf
Widegren, J. A. , and Bruno, T. J. , 2008, “ Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A,” Ind. Eng. Chem. Res., 47(13), pp. 4342–4348. [CrossRef]
Lovestead, T. M. , Burger, J. L. , Schneider, N. , and Bruno, T. J. , 2016, “ Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development,” Energy Fuels, 30(12), pp. 10029–10044. [CrossRef] [PubMed]
Bruno, T. J. , Abel, K. R. , and Riggs, J. R. , 2012, “ Comparison of JP-8 and JP-8+ 100 With the Advanced Distillation Curve Approach,” Energy Fuels, 26(9), pp. 5843–5850. [CrossRef]
Bruno, T. J. , and Smith, B. L. , 2006, “ Improvements in the Measurement of Distillation Curves. 2. Application to Aerospace/Aviation Fuels RP-1 and S-8,” Ind. Eng. Chem. Res., 45(12), pp. 4381–4388. [CrossRef]
Anitescu, G. , and Bruno, T. J. , 2012, “ Biodiesel Fuels From Supercritical Fluid Processing: Quality Evaluation With the Advanced Distillation Curve Method and Cetane Numbers,” Energy Fuels, 26(8), pp. 5256–5264. [CrossRef]
Doble, P. , Sandercock, M. , Du Pasquier, E. , Petocz, P. , Roux, C. , and Dawson, M. , 2003, “ Classification of Premium and Regular Gasoline by Gas Chromatography/Mass Spectrometry, Principal Component Analysis and Artificial Neural Networks,” Forensic Sci. Int., 132(1), pp. 26–39. [CrossRef] [PubMed]
Sandercock, P. , and Du Pasquier, E. , 2003, “ Chemical Fingerprinting of Unevaporated Automotive Gasoline Samples,” Forensic Sci. Int., 134(1), pp. 1–10. [CrossRef] [PubMed]
Wang, F. C.-Y. , Qian, K. , and Green, L. A. , 2005, “ GC× MS of Diesel: A Two-Dimensional Separation Approach,” Anal. Chem., 77(9), pp. 2777–2785. [CrossRef] [PubMed]
Mei, H. , Mei, B. , and Yen, T. F. , 2003, “ A New Method for Obtaining Ultra-Low Sulfur Diesel Fuel Via Ultrasound Assisted Oxidative Desulfurization,” Fuel, 82(4), pp. 405–414. [CrossRef]
Dagaut, P. , El Bakali, A. , and Ristori, A. , 2006, “ The Combustion of Kerosene: Experimental Results and Kinetic Modelling Using 1- to 3-Component Surrogate Model Fuels,” Fuel, 85(7–8), pp. 944–956. [CrossRef]
Honnet, S. , Seshadri, K. , Niemann, U. , and Peters, N. , 2009, “ A Surrogate Fuel for Kerosene,” Proc. Combust. Inst., 32(1), pp. 485–492. [CrossRef]
Sarathy, S. M. , Kukkadapu, G. , Mehl, M. , Wang, W. , Javed, T. , Park, S. , Oehlschlaeger, M. A. , Farooq, A. , Pitz, W. J. , and Sung, C.-J. , 2015, “ Ignition of Alkane-Rich FACE Gasoline Fuels and Their Surrogate Mixtures,” Proc. Combust. Inst., 35(1), pp. 249–257. [CrossRef]
Sarathy, S. M. , Kukkadapu, G. , Mehl, M. , Javed, T. , Ahmed, A. , Naser, N. , Tekawade, A. , Kosiba, G. , AlAbbad, M. , and Singh, E. , 2016, “ Compositional Effects on the Ignition of FACE Gasolines,” Combust. Flame, 169, pp. 171–193. [CrossRef]
Dooley, S. , Won, S. H. , Chaos, M. , Heyne, J. , Ju, Y. , Dryer, F. L. , Kumar, K. , Sung, C.-J. , Wang, H. , Oehlschlaeger, M. A. , Santoro, R. J. , and Litzinger, T. A. , 2010, “ A Jet Fuel Surrogate Formulated by Real Fuel Properties,” Combust. Flame, 157(12), pp. 2333–2339. [CrossRef]
Dooley, S. , Won, S. H. , Heyne, J. , Farouk, T. I. , Ju, Y. , Dryer, F. L. , Kumar, K. , Hui, X. , Sung, C.-J. , Wang, H. , Oehlschlaeger, M. A. , Iyer, V. , Iyer, S. , Litzinger, T. A. , Santoro, R. J. , Malewicki, T. , and Brezinsky, K. , 2012, “ The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena,” Combust. Flame, 159(4), pp. 1444–1466. [CrossRef]
Allard, L. N. , Hole, N. J. , Webster, G. D. , Ryan, T. W. , Ott, D. , Beregszazy, A. , Fairbridge, C. W. , Cooley, J. , Mitchell, K. , and Richardson, E. K. , 1997, “ Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)-Part II,” SAE Paper No. 0148-7191.
Allard, L. N. , Webster, G. D. , Ryan, T. W. , Matheaus, A. C. , Baker, G. , Beregszazy, A. , Read, H. , Mortimer, K. , and Jones, G. J. , 2001, “ Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™)—Part IV,” SAE Paper No. 2001-01-3527.
Zheng, Z. , Badawy, T. , Henein, N. , Schihl, P. , and Sattler, E. , 2017, “ Formulation of Sasol Isomerized Paraffinic Kerosene Surrogate Fuel for Diesel Engine Application Using an Ignition Quality Tester,” ASME J. Eng. Gas Turbines Power, 139(9), p. 092801. [CrossRef]
Yang, Y. , Boehman, A. L. , and Santoro, R. J. , 2007, “ A Study of Jet Fuel Sooting Tendency Using the Threshold Sooting Index (TSI) Model,” Combust. Flame, 149(1–2), pp. 191–205. [CrossRef]
Liang, L. , Naik, C. V. , Puduppakkam, K. , Wang, C. , Modak, A. , Meeks, E. , Ge, H.-W. , Reitz, R. D. , and Rutland, C. , 2010, “ Efficient Simulation of Diesel Engine Combustion Using Realistic Chemical Kinetics in CFD,” SAE Paper No. 2010-01-0178.
Kim, D. , Martz, J. , and Violi, A. , 2014, “ A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel,” Combust. Flame, 161(6), pp. 1489–1498. [CrossRef]
Abianeh, O. S. , Oehlschlaeger, M. A. , and Sung, C.-J. , 2015, “ A Surrogate Mixture and Kinetic Mechanism for Emulating the Evaporation and Autoignition Characteristics of Gasoline Fuel,” Combust. Flame, 162(10), pp. 3773–3784. [CrossRef]
Puduppakkam, K. V. , Liang, L. , Naik, C. V. , Meeks, E. , and Bunting, B. G. , 2009, “ Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels,” SAE Paper No. 2009-01-0669.
Violi, A. , Yan, S. , Eddings, E. , Sarofim, A. , Granata, S. , Faravelli, T. , and Ranzi, E. , 2002, “ Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures,” Combust. Sci. Technol., 174(11–12), pp. 399–417. [CrossRef]
Slavinskaya, N. A. , Zizin, A. , and Aigner, M. , 2010, “ On Model Design of a Surrogate Fuel Formulation,” ASME J. Eng. Gas Turbines Power, 132(11), pp. 2201–2210. [CrossRef]
Carr, M. A. , Caton, P. A. , Hamilton, L. J. , Cowart, J. S. , Mehl, M. , and Pitz, W. J. , 2012, “ An Experimental and Modeling-Based Study Into the Ignition Delay Characteristics of Diesel Surrogate Binary Blend Fuels,” ASME J. Eng. Gas Turbines Power, 134(7), p. 072803. [CrossRef]
ASTM International, 2004, “ ASTM Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure,” ASTM International, West Conshohocken, PA, Standard No. ASTM D 86-04b.
Yu, J. , Ju, Y. , and Gou, X. , 2016, “ Surrogate Fuel Formulation for Oxygenated and Hydrocarbon Fuels by Using the Molecular Structures and Functional Groups,” Fuel, 166, pp. 211–218. [CrossRef]
Yu, J. , Wang, Z. , Zhuo, X. , Wang, W. , and Gou, X. , 2016, “ Surrogate Definition and Chemical Kinetic Modeling for Two Different Jet Aviation Fuels,” Energy Fuels, 30(2), pp. 1375–1382.
Allen, D. T. , 1986, “ Structural Characterization and Property Estimation for Complex Mixtures,” Fluid Phase Equilib., 30, pp. 353–366. [CrossRef]
Elbaz, A. M. , Gani, A. , Hourani, N. , Emwas, A. H. , Sarathy, S. M. , and Roberts, W. L. , 2015, “ TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil,” Energy Fuels, 29(12), pp. 7825–7835. [CrossRef]
Nielsen, K. E. , Dittmer, J. , Malmendal, A. , and Nielsen, N. C. , 2008, “ Quantitative Analysis of Constituents in Heavy Fuel Oil by 1H Nuclear Magnetic Resonance (NMR) Spectroscopy and Multivariate Data Analysis,” Energy Fuels, 22(6), pp. 4070–4076. [CrossRef]
Edwards, J. C. , 2011, “ A Review of Applications of NMR Spectroscopy in the Petroleum Industry,” Spectroscopic Analysis Petroleum Products Lubricants, ASTM International, West Conshohocken, PA, pp. 423–472.
Burger, J. L. , Widegren, J. A. , Lovestead, T. M. , and Bruno, T. J. , 2015, “ 1H and 13C NMR Analysis of Gas Turbine Fuels as Applied to the Advanced Distillation Curve Method,” Energy Fuels, 29(8), pp. 4874–4885. [CrossRef]
Abdul Jameel, A. G. , Elbaz, A. M. , Emwas, A.-H. , Roberts, W. L. , and Sarathy, S. M. , 2016, “ Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using 1H and 13C Nuclear Magnetic Resonance Spectroscopy,” Energy Fuels, 30(5), pp. 3894–3905. [CrossRef]
Burri, J. , Crockett, R. , Hany, R. , and Rentsch, D. , 2004, “ Gasoline Composition Determined by H NMR Spectroscopy,” Fuel, 83(2), pp. 187–193. [CrossRef]
Hsieh, P. Y. , Widegren, J. A. , Fortin, T. J. , and Bruno, T. J. , 2014, “ Chemical and Thermophysical Characterization of an Algae-Based Hydrotreated Renewable Diesel Fuel,” Energy Fuels, 28(5), pp. 3192–3205. [CrossRef]
Abdul Jameel, A. G. , Naser, N. , Emwas, A.-H. , Dooley, S. , and Sarathy, S. M. , 2016, “ Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression,” Energy Fuels, 30(11), pp. 9819–9835. [CrossRef]
Kapur, G. , Ecker, A. , and Meusinger, R. , 2001, “ Establishing Quantitative Structure—Property Relationships (QSPR) of Diesel Samples by Proton-NMR & Multiple Linear Regression (MLR) Analysis,” Energy Fuels, 15(4), pp. 943–948. [CrossRef]
Cannella, W. , Foster, M. , Gunter, G. , and Leppard, W. , 2014, “ FACE Gasolines and Blends With Ethanol: Detailed Characterization of Physical and Chemical Properties,” Coordinating Research Council, Inc., Alpharetta, GA, CRC Report No. AVFL-24. https://crcao.org/reports/recentstudies2014/AVFL-24/AVFL-24%20FACE%20Gasolines%20Report%20-%20071414.pdf
Javed, T. , 2016, “ Combustion Kinetic Studies of Gasolines and Surrogates,” Ph.D. dissertation, King Abdullah University Science and Technology, Thuwal, Saudi Arabia. https://repository.kaust.edu.sa/bitstream/handle/10754/621837/Tamour_Javed_PhD_Dissertationv9.pdf?sequence=1&isAllowed=y
Burger, J. L. , Schneider, N. , and Bruno, T. J. , 2015, “ Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines,” Energy Fuels, 29(7), pp. 4227–4235. [CrossRef]
Benson, S. W. , Cruickshank, F. , Golden, D. , Haugen, G. R. , O'neal, H. , Rodgers, A. , Shaw, R. , and Walsh, R. , 1969, “ Additivity Rules for the Estimation of Thermochemical Properties,” Chem. Rev., 69(3), pp. 279–324. [CrossRef]
Benson, S. W. , and Buss, J. H. , 1958, “ Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties,” J. Chem. Phys., 29(3), pp. 546–572. [CrossRef]
Bruno, T. J. , and Svoronos, P. D. , 2003, CRC Handbook of Basic Tables for Chemical Analysis, CRC Press, Boca Raton, FL.
Zhou, C.-W. , Li, Y. , O'Connor, E. , Somers, K. P. , Thion, S. , Keesee, C. , Mathieu, O. , Petersen, E. L. , DeVerter, T. A. , and Oehlschlaeger, M. A. , 2016, “ A Comprehensive Experimental and Modeling Study of Isobutene Oxidation,” Combust. Flame, 167, pp. 353–379. [CrossRef]
Mehl, M. , Pitz, W. J. , Westbrook, C. K. , and Curran, H. J. , 2011, “ Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proc. Combust. Inst., 33(1), pp. 193–200. [CrossRef]
Sarathy, S. M. , Javed, T. , Karsenty, F. , Heufer, A. , Wang, W. , Park, S. , Elwardany, A. , Farooq, A. , Westbrook, C. K. , and Pitz, W. J. , 2014, “ A Comprehensive Combustion Chemistry Study of 2, 5-Dimethylhexane,” Combust. Flame, 161(6), pp. 1444–1459. [CrossRef]
Narayanaswamy, K. , Pitsch, H. , and Pepiot, P. , 2015, “ A Chemical Mechanism for Low to High Temperature Oxidation of Methylcyclohexane as a Component of Transportation Fuel Surrogates,” Combust. Flame, 162(4), pp. 1193–1213. [CrossRef]
Design, R. , 2010, Inc. CHEMKIN-PRO, Release 15101, Reaction Design, San Diego, CA.
Chen, B. , Togbé, C. , Wang, Z. , Dagaut, P. , and Sarathy, S. M. , 2017, “ Jet-Stirred Reactor Oxidation of Alkane-Rich FACE Gasoline Fuels,” Proc. Combust. Inst., 36(1), pp. 517–524. [CrossRef]
Selim, H. , Mohamed, S. Y. , Dawood, A. E. , and Sarathy, S. M. , 2017, “ Understanding Premixed Flame Chemistry of Gasoline Fuels by Comparing Quantities of Interest,” Proc. Combust. Inst., 36(1), pp. 1203–1211. [CrossRef]
Chen, B. , Togbé, C. , Selim, H. , Dagaut, P. , and Sarathy, S. M. , 2017, “ Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline,” Energy Fuels, 31(5), pp. 5543–5553. [CrossRef]

Figures

Grahic Jump Location
Fig. 8

Major species profiles for FACE A flames and corresponding surrogate simulations, Symbols are experiment results from Ref. [54]

Grahic Jump Location
Fig. 1

Ignition delay measurements (symbols) and model predictions (lines) for 2,5-dimethylhexaneand methylcyclohexane. Symbols are experimental measurement of 2,5-dimethylhexane [50] and methylcyclohexane [51], dashed line is model computations by individual mechanism. Solid line is model computations for present surrogate model.

Grahic Jump Location
Fig. 2

Simulated ST ignition delays for various FACE A surrogate mixtures. Symbols are experimental ST data [14] and lines are simulations. Simulations done using FACE A gasoline mechanism for Sarathy et al. [14] (dot lines) and present surrogate fuel (solid lines).

Grahic Jump Location
Fig. 3

Simulated ST ignition delays for various FACE F surrogate mixtures. Symbols are experimental ST data [15] and lines are simulations. Simulations done using FACE gasoline mechanism for Sarathy et al. [15] (dot lines) and present surrogate fuel (solid lines).

Grahic Jump Location
Fig. 4

Reactant profiles in FACE A gasoline and its corresponding surrogates. Symbols are experiment results from Chen et al. [53] while lines are simulation results. Simulations done using FACE A gasoline mechanism for Sarathy et al. [14] (dot lines) and present surrogate fuel (solid lines). The simulated reactant mole fractions were normalized to 1000 ppm for better comparison with experiments.

Grahic Jump Location
Fig. 5

Major and intermediate species profiles of FACE A gasoline and corresponding surrogate in stoichiometry conditions (Φ = 1.0). Symbols are experiment results from Ref. [53].

Grahic Jump Location
Fig. 6

Reactant profiles in FACE F gasoline and its corresponding surrogates. Symbols are experiment results from Chen et al. [55] while lines are simulation results. Simulations done using FACE F gasoline mechanism for Sarathy et al. [15] (dot lines) and present surrogate fuel (solid lines). The simulated reactant mole fractions were normalized to 1000 ppm for better comparison with experiments.

Grahic Jump Location
Fig. 7

Major and intermediate species profiles of FACE F gasoline and corresponding surrogate in stoichiometry conditions (Φ = 1.0). Symbols are experiment results from Ref. [55].

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In