0
Research Papers

A Critical Analysis on Low-Order Simulation Models for Darrieus Vawts: How Much Do They Pertain to the Real Flow?

[+] Author and Article Information
Alessandro Bianchini

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: alessandro.bianchini@unifi.it

Francesco Balduzzi

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: francesco.balduzzi@unifi.it

Giovanni Ferrara

Department of Industrial Engineering,
University of Florence,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: giovanni.ferrara@unifi.it

Giacomo Persico

Dipartimento di Energia,
Politecnico di Milano,
Via Lambruschini 4,
Milano 20156, Italy
e-mail: giacomo.persico@polimi.it

Vincenzo Dossena

Dipartimento di Energia,
Politecnico di Milano,
Via Lambruschini 4,
Milano 20156, Italy
e-mail: vincenzo.dossena@polimi.it

Lorenzo Ferrari

Department of Energy, Systems, Territory and
Construction Engineering,
University of Pisa,
Largo Lucio Lazzarino,
Pisa 56122, Italy
e-mail: lorenzo.ferrari@unipi.it

Manuscript received June 26, 2018; final manuscript received July 3, 2018; published online September 17, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(1), 011018 (Sep 17, 2018) (11 pages) Paper No: GTP-18-1361; doi: 10.1115/1.4040851 History: Received June 26, 2018; Revised July 03, 2018

To improve the efficiency of Darrieus wind turbines, which still lacks from that of horizontal-axis rotors, computational fluid dynamics (CFD) techniques are now extensively applied, since they only provide a detailed and comprehensive flow representation. Their computational cost makes them, however, still prohibitive for routine application in the industrial context, which still makes large use of low-order simulation models like the blade element momentum (BEM) theory. These models have been shown to provide relatively accurate estimations of the overall turbine performance; conversely, the description of the flow field suffers from the strong approximations introduced in the modeling of the flow physics. In this study, the effectiveness of the simplified BEM approach was critically benchmarked against a comprehensive description of the flow field past the rotating blades coming from the combination of a two-dimensional (2D) unsteady CFD model and experimental wind tunnel tests; for both data sets, the overall performance and the wake characteristics on the midplane of a small-scale H-shaped Darrieus turbine were available. Upon examination of the flow field, the validity of the ubiquitous use of induction factors is discussed, together with the resulting velocity profiles upstream and downstream the rotor. Particular attention is paid on the actual flow conditions (i.e., incidence angle and relative speed) experienced by the airfoils in motion at different azimuthal angles, for which a new procedure for the postprocessing of CFD data is here proposed. Based on this model, the actual lift and drag coefficients produced by the airfoils in motion are analyzed and discussed, with particular focus on dynamic stall. The analysis highlights the main critical issues and flaws of the low-order BEM approach, but also sheds new light on the physical reasons why the overall performance prediction of these models is often acceptable for a first-design analysis.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sutherland, H. J. , Berg, D. E. , and Ashwill, T. D. , 2012, “ A Retrospective of VAWT Technology,” Sandia National Laboratories, Alburquerque, NM, Report No. SAND2012-0304. https://prod.sandia.gov/techlib-noauth/access-control.cgi/2012/120304.pdf
Damota, J. , Lamas, I. , Couce, A. , and Rodríguez, J. , 2015, “ Vertical Axis Wind Turbines: Current Technologies and Future Trends,” International Conference on Renewable Energies and Power Quality (ICREPQ'15), La Coruña, Spain, Mar. 25–27, pp. 530–535. http://windharvest.com/wp-content/uploads/2017/04/Vertical-Axis-Wind-Turbines-Current-Technologies-and-Future-Trends-J.-Damota-I.-Lamas-A.-Couce-J.-Rodriguez-April-2015.pdf
Carbó Molina, A. , Bartoli, G. , and De Troyer, T. , 2017, “ Generation of Uniform Turbulence Profiles in the Wind Tunnel for Urban VAWT Testing,” Wind Energy Exploitation in Urban Environment: TUrbWind 2017 Colloquium, Springer, Cham, Switzerland.
Bianchini, A. , Ferrara, G. , Ferrari, L. , and Magnani, S. , 2012, “ An Improved Model for the Performance Estimation of an H-Darrieus Wind Turbine in Skewed Flow,” Wind Eng., 36(6), pp. 667–686. [CrossRef]
Bianchini, A. , Cangioli, F. , Papini, S. , Rindi, A. , Carnevale, E. A. , and Ferrari, L. , 2015, “ Structural Analysis of a Small H-Darrieus Wind Turbine Using Beam Models: Development and Assessment,” ASME J. Turbomach., 137(1), p. 011003.
Mertens, S. , van Kuik, G. , and van Bussel, G. , 2003, “ Performance of an H-Darrieus in the Skewed Flow on a Roof,” ASME J. Sol. Energy Eng., 125(4), pp. 433–440. [CrossRef]
Balduzzi, F. , Bianchini, A. , Carnevale, E. A. , Ferrari, L. , and Magnani, S. , 2012, “ Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building,” Appl. Energy, 97, pp. 921–929. [CrossRef]
Blonk, D. L. , 2010, “ Floating Vertical Axis Wind Turbines,” M.Sc. thesis, TU Delft, Delft, The Netherlands.
Schmidt Paulsen, U. , Madsen, H. A. , Hattel, J. H. , Baran, I. , and Nielsen, P. H. , 2013, “ Design Optimization of a 5 MW Floating Offshore Vertical-Axis Wind Turbine,” Energy Procedia, 35, pp. 22–32. [CrossRef]
Aslam Bhutta, M. M. , Hayat, N. , Farooq, A. U. , Ali, Z. , Jamil, S. R. , and Hussain, Z. , 2012, “ Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques,” Renewable Sustainable Energy Rev., 16(4), pp. 1926–1939. [CrossRef]
Bianchini, A. , Ferrara, G. , and Ferrari, L. , 2015, “ Design Guidelines for H-Darrieus Wind Turbines: Optimization of the Annual Energy Yield,” Energy Convers. Manage., 89, pp. 690–707. [CrossRef]
Paraschivoiu, I. , 2002, Wind Turbine Design With Emphasis on Darrieus Concept, Polytechnic International Press, Montreal, QC, Canada.
Alaimo, A. , Esposito, A. , Messineo, A. , Orlando, C. , and Tumino, D. , 2015, “ 3D CFD Analysis of a Vertical Axis Wind Turbine,” Energies, 8(4), pp. 3013–3033. [CrossRef]
Balduzzi, F. , Drofelnik, J. , Bianchini, A. , Ferrara, G. , Ferrari, L. , and Campobasso, M. S. , 2017, “ Darrieus Wind Turbine Blade Unsteady Aerodynamics: A Three-Dimensional Navier–Stokes CFD Assessment,” Energy, 128, pp. 550–563. [CrossRef]
Balduzzi, F. , Bianchini, A. , Ferrara, G. , and Ferrari, L. , 2016, “ Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines,” Energy, 97, pp. 246–261. [CrossRef]
Simão Ferreira, C. , Aagaard Madsen, H. , Barone, M. , Roscher, B. , Deglaire, P. , and Arduin, I. , 2014, “ Comparison of Aerodynamic Models for Vertical Axis Wind Turbines,” J. Phys.: Conf. Ser., 524, p. 012125. [CrossRef]
Deglaire, P. , 2010, “ Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines,” Doctoral thesis, Faculty of Science and Technology, Uppsala University, Uppsala, Sweden. https://www.diva-portal.org/smash/get/diva2:356811/FULLTEXT02.pdf
Marten, D. , Bianchini, A. , Pechlivanoglou, G. , Balduzzi, F. , Nayeri, C. N. , Ferrara, G. , Paschereit, C. O. , and Ferrari, L. , 2016, “ Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance,” ASME J. Eng. Gas Turbines Power, 139(2), p. 0226069. [CrossRef]
Rainbird, J. , Bianchini, A. , Balduzzi, F. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines,” Energy Convers. Manage., 106, pp. 373–384. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , and Ferrari, L. , 2016, “ Virtual Incidence Effect on Rotating Airfoils in Darrieus Wind Turbines,” Energy Convers. Manage., 111, pp. 329–338. [CrossRef]
Balduzzi, F. , Bianchini, A. , Maleci, R. , Ferrara, G. , and Ferrari, L. , 2014, “ Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines,” ASME J. Turbomach., 137(1), p. 011006. [CrossRef]
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2017, “ Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool,” ASME J. Fluids Eng., 140(2), p. 021107. [CrossRef]
Saverin, J. , Persico, G. , Marten, D. , Holst, D. , Pechlivanoglou, G. , Paschereit, C. , and Dossena, V. , 2018, “ Comparison of Experimental and Numerically Predicted Three-Dimensional Wake Behaviour of a Vertical Axis Wind Turbine,” ASME J. Eng. Gas Turbines Power (accepted).
Van Garrel, A. , 2003, “ Development of a Wind Turbine Aerodynamics Simulation Module,” Energy Research Centre of the Netherlands, Petten, The Netherlands, Technical Report No. ECN-C-03-079. https://www.researchgate.net/publication/299643591_Development_of_a_Wind_Turbine_Aerodynamics_Simulation_Module
Dossena, V. , Persico, G. , Paradiso, B. , Battisti, L. , Dell'Anna, S. , Brighenti, A. , and Benini, E. , 2015, “ An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment,” ASME J. Energy Resour. Technol., 137(5), p. 051207. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , Ferrari, L. , Persico, B. , Dossena, V. , and Battisti, L. , 2017, “ Detailed Analysis of the Wake Structure of a Straight-Blade H-Darrieus Wind Turbine by Means of Wind Tunnel Experiments and CFD Simulations,” ASME J. Eng. Gas Turbines Power, 140(3), p. 032604. [CrossRef]
ANSYS, 2015, “ FLUENT® 16.0 Theory Guide,” ANSYS Inc., Canonsburg, PA.
Balduzzi, F. , Bianchini, A. , Maleci, R. , Ferrara, G. , and Ferrari, L. , 2016, “ Critical Issues in the CFD Simulation of Darrieus Wind Turbines,” Renewable Energy, 85(01), pp. 419–435. [CrossRef]
Menter, F. , 1994, “ Two-Equation Turbulence-Models for Engineering Applications,” AIAA J., 32(8), pp. 1598–1605. [CrossRef]
Amet, E. , Maître, T. , Pellone, C. , and Achard, J. L. , 2009, “ 2D Numerical Simulations of Blade-Vortex Interaction in a Darrieus Turbine,” ASME J. Fluids Eng., 131(11), p. 111103.
Balduzzi, F. , Bianchini, A. , Gigante, F. A. , Ferrara, G. , Campobasso, M. S. , and Ferrari, L. , 2015, “ Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis,” ASME Paper No. GT2015-42663.
Bianchini, A. , Ferrari, L. , and Magnani, S. , 2011, “ Start-Up Behavior of a Three-Bladed H-Darrieus VAWT: Experimental and Numerical Analysis,” ASME Paper No. GT2011-45882.
Paraschivoiu, I. , and Delclaux, F. , 1983, “ Double Multiple Streamtube Model With Recent Improvements,” J. Energy, 7(3), pp. 250–255. [CrossRef]
Marshall, L. , and Buhl, J., Jr. , 2005, “ A New Empirical Relationship Between Thrust Coefficient and Induction Factor for the Turbulent Windmill State,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-36834. https://www.nrel.gov/docs/fy05osti/36834.pdf
Abbott, I. H. , and Von Doenhoff, A. E. , 1959, Theory of Wing Sections, Dover Publications, Mineola, NY.
Migliore, P. G. , Wolfe, W. P. , and Fanucci, J. B. , 1980, “ Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics,” J. Energy, 4(2), pp. 49–55. [CrossRef]
Bianchini, A. , Balduzzi, F. , Rainbird, J. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 1: Flow Curvature Effects,” ASME J. Eng. Gas Turbines Power, 138(3), p. 032602. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , and Ferrari, L. , 2017, “ Aerodynamics of Darrieus Wind Turbines Airfoils: The Impact of Pitching Moment,” ASME J. Eng. Gas Turbines Power, 139(4), p. 042602. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , and Ferrari, L. , 2016, “ Aerodynamics of Darrieus Wind Turbines Airfoils During Start-Up,” ASME Paper No. GT2016-57679.
Linn, A. B. , 1999, “ Determination of Average Lift of a Rapidly Pitching Airfoil,” M.Sc. thesis, Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA. https://web.wpi.edu/Pubs/ETD/Available/etd-0512100-095442/unrestricted/linn.pdf
Viterna, L. A. , and Janetzke, D. C. , 1982, “ Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA-TM-82944. https://ntrs.nasa.gov/search.jsp?R=19820025954
Bianchini, A. , Balduzzi, F. , Rainbird, J. , Peiro, J. , Graham, J. M. R. , Ferrara, G. , and Ferrari, L. , 2015, “ An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part 2: Post-Stall Data Extrapolation Methods,” ASME Paper No. GT2015-42285.
Massé, B. , 1981, “ Description De Deux Programmes D'ordinateur Pour Le Calcul Des Performances Et Des Charges Aérodynamiques Pour Les Éoliennes à Axe Vertical,” Varennes, QC, Canada, Technical Report No. IREQ-2379.
Drela, M. , and Youngren, H. , 2001, “ XFoil User Guide,” MIT Aeronautics and Astronautics Department, Cambridge, MA, accessed July 24, 2018, http://web.mit.edu/drela/Public/web/xfoil/
Deperrois, A. , 2018, “ XFLR5 User Guide,” epub, accessed July 24, 2018, accessed Oct. 12, 2017, www.xflr5.com/xflr5.htm
Persico, G. , Dossena, V. , Paradiso, B. , Battisti, L. , Brighenti, A. , and Benini, E. , 2017, “ Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines,” ASME J. Energy Resour. Technol., 139(3), p. 031203. [CrossRef]
Bianchini, A. , Balduzzi, F. , Ferrara, G. , and Ferrari, L. , 2016, “ Critical Analysis of Dynamic Stall Models in Low-Order Simulation Models for Vertical-Axis Wind Turbines,” Energy Procedia, 101, pp. 488–495. [CrossRef]
Bianchini, A. , Balduzzi, F. , Bachant, P. , Ferrara, G. , and Ferrari, L. , 2017, “ Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment,” Energy Convers. Manage., 136, pp. 318–328. [CrossRef]
Saverin, J. , and Frank, S. , 2015, “ The Loading Cycle of a H-Blade Type Vertical Axis Wind Turbine,” ASME Paper No. GT2015-42185.
Bianchini, A. , Balduzzi, F. , Ferrara, G. , and Ferrari, L. , 2016, “ A Computational Procedure to Define the Incidence Angle on Airfoils Rotating Around an Axis Orthogonal to Flow Direction,” Energy Convers. Manage., 126, pp. 790–798. [CrossRef]
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2015, “ Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade,” ASME Paper No. GT2015-43265.
Marten, D. , Lennie, M. , Pechlivanoglou, G. , Nayeri, C. D. , and Paschereit, C. O. , 2015, “ Integration of an Unsteady Nonlinear Lifting Line Free Vortex Wake Algorithm in a Wind Turbine Design Framework,” EWEA Annual Meeting, Paris, France, Nov. 17–20. https://www.researchgate.net/publication/284644420_Integration_of_an_Unsteady_Nonlinear_Lifting_Line_Free_Vortex_Wake_Algorithm_in_a_Wind_Turbine_Design_Framework
Holst, D. , Balduzzi, F. , Bianchini, A. , Ferrara, G. , Ferrari, L. , Church, B. , Wegner, F. , Pechlivanoglou, G. , Nayeri, C. N. , and Paschereit, C. O. , 2018, “ Static and Dynamic Analysis of a NACA 0021 Airfoil Section at Low Reynolds Numbers Based on Experiments and CFD,” ASME Paper No. GT2018-75426.

Figures

Grahic Jump Location
Fig. 1

Picture (a) and sketch (b) of the H-shaped Darrieus VAWT considered for this work

Grahic Jump Location
Fig. 2

Comparison between the geometric NACA0021 and its virtually transformed homologous

Grahic Jump Location
Fig. 3

Lift coefficients used for the analysis at some Reynolds numbers of interest

Grahic Jump Location
Fig. 4

Drag coefficients used for the analysis at some Reynolds numbers of interest

Grahic Jump Location
Fig. 5

Comparison between the experimental power coefficient curve, the one from CFD simulations and those from a BEM approach with different levels of accuracy

Grahic Jump Location
Fig. 6

Comparison between the single blade torque profiles at TSR = 1.5, 2.4, and 3.3 coming from CFD and BEM simulations

Grahic Jump Location
Fig. 7

Signs and conventions used for the analysis

Grahic Jump Location
Fig. 8

Velocity triangles and aerodynamic forces on the blade (lift and drag forces not in scale)

Grahic Jump Location
Fig. 9

Calculated AoA as a function of the velocity probe point at TSR = 3.3 with no induced velocity

Grahic Jump Location
Fig. 10

Calculated AoA as a function of the velocity probe point at TSR = 3.3 with induced velocity

Grahic Jump Location
Fig. 11

Comparison between the AoAs (top) and the flow velocities (bottom) at TSR = 1.5: CFD versus BEM

Grahic Jump Location
Fig. 12

Comparison between the AoAs (top) and the flow velocities (bottom) at TSR = 3.3: CFD versus BEM

Grahic Jump Location
Fig. 13

Actual lift coefficient produced by a blade at TSR = 2.4: CFD versus BEM

Grahic Jump Location
Fig. 14

Actual lift coefficient produced by a blade at TSR = 3.3: CFD versus BEM

Grahic Jump Location
Fig. 15

Comparison of velocity profiles at TSR = 1.5: CFD and experiments versus BEM

Grahic Jump Location
Fig. 16

Comparison of velocity profiles at TSR = 3.3: CFD and experiments versus BEM

Grahic Jump Location
Fig. 17

Velocity contour predicted by CFD at TSR = 1.5

Grahic Jump Location
Fig. 18

Velocity contour predicted by CFD at TSR = 3.3

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In