0
research-article

Mistuning Identification Approach with Focus on High-Speed Centrifugal Compressors

[+] Author and Article Information
Robby Weber

Chair of Structural Mechanics and Vehicle Vibration Technology, Brandenburg University of Technology Cottbus-Senftenberg, D-03046 Cottbus, Germany
robby.weber@b-tu.de

Arnold Kühhorn

Chair of Structural Mechanics and Vehicle Vibration Technology, Brandenburg University of Technology Cottbus-Senftenberg, D-03046 Cottbus, Germany
kuehhorn@b-tu.de

1Corresponding author.

ASME doi:10.1115/1.4040999 History: Received June 22, 2018; Revised July 03, 2018

Abstract

Usually, in the field of turbomachinery, identical blades are assumed to lower the required computational resources. However, mistuning is unavoidable, since small deviations due to the manufacturing process will lead to slightly different blade behavior. Potential effects such as mode localization and amplification can be treated statistically and have been thoroughly studied in the past. Since then, several reduced order models (ROMs) have been invented in order to calculate the maximum vibration amplitude of a fleet of mistuned blisks. Nowadays, it is common knowledge that the level of manufacturing imperfection (referred as level of mistuning) significantly influence mode localization as well as vibration amplification effects. Optical measurements of the geometric deviations of manufactured blades and converting to a high-fidelity finite element model make huge progress. However, to the knowledge of the authors, there is no reliable method, that derives a characteristic quantity from the geometric mistuning, that fits into the mentioned statistically approaches. Therefore, experimental data is needed to quantify the level of mistuning. Several approaches, which isolate blade individual parameters, are used to identify the dynamic behavior of axial compressors and turbines. These methods can be applied to medium-speed centrifugal turbine wheels but tend to fail to evaluate high-speed compressor with splitter blades. This paper briefly presents the original approach and discusses the reasons for failure. Thereafter, a new approach is proposed. Finally, the level of mistuning and important quantities to perform a statistical evaluation of a high-speed compressor is shown.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In