0
Research Papers: Research Papers

Measurements of the reactivity of premixed, stagnation, methane-air flames at gas turbine relevant pressures

[+] Author and Article Information
Philippe Versailles

Mem. ASME
Department of Mechanical Engineering,
McGill University,
Montréal, QC H3A 0C3, Canada;
Mechanical Designer Combustion,
Siemens Canada Limited,
Montréal, QC H9P 1A5, Canada
e-mails: philippe.versailles@siemens.com,
philippe.versailles@mail.mcgill.ca

Antoine Durocher

Department of Mechanical Engineering,
McGill University,
Montréal, QC H3A 0C3, Canada
e-mail: antoine.durocher@mail.mcgill.ca

Gilles Bourque

Fellow ASME
Combustion Key Expert
Siemens Canada Limited,
Montréal, QC H9P 1A5, Canada;
Department of Mechanical Engineering,
McGill University,
Montréal, QC H3A 0C3, Canada
e-mails: gilles.bourque@mcgill.ca,
gilles.bourque@siemens.com

Jeffrey M. Bergthorson

Fellow ASME
Department of Mechanical Engineering,
McGill University,
Montréal, QC H3A 0C3, Canada
e-mail: jeff.bergthorson@mcgill.ca

1Corresponding author.

Manuscript received June 27, 2018; final manuscript received July 17, 2018; published online October 17, 2018. Editor: Jerzy T. Sawicki.Permission for use: The content of this paper is copyrighted by Siemens Canada Ltd. and is licensed to ASME for publication and distribution only. Any inquiries regarding permission to use the content of this paper, in whole or in part, for any purpose must be addressed to Siemens Canada Ltd. directly.

J. Eng. Gas Turbines Power 141(1), 011027 (Oct 17, 2018) (10 pages) Paper No: GTP-18-1392; doi: 10.1115/1.4041125 History: Received June 27, 2018; Revised July 17, 2018

The adiabatic, unstrained, laminar flame speed, SL, is a fundamental combustion property, and a premier target for the development and validation of thermochemical mechanisms. It is one of the leading parameters determining the turbulent flame speed, the flame position in burners and combustors, and the occurrence of transient phenomena, such as flashback and blowout. At pressures relevant to gas turbine engines, SL is generally extracted from the continuous expansion of a spherical reaction front in a combustion bomb. However, independent measurements obtained in different types of apparatuses are required to fully constrain thermochemical mechanisms. Here, a jet-wall, stagnation burner designed for operation at gas turbine relevant conditions is presented, and used to assess the reactivity of premixed, lean-to-rich, methane–air flames at pressures up to 16 atm. One-dimensional (1D) profiles of axial velocity are obtained on the centerline axis of the burner using particle tracking velocimetry, and compared to quasi-1D flame simulations performed with a selection of thermochemical mechanisms available in the literature. Significant discrepancies are observed between the numerical and experimental data, and among the predictions of the mechanisms. This motivates further chemical modeling efforts, and implies that designers in industry must carefully select the mechanisms employed for the development of gas turbine combustors.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kuo, K. K. , 2005, Principles of Combustion, 2nd ed., Wiley, Hoboken, NJ.
Law, C. K. , 2006, Combustion Physics, Cambridge University Press, Cambridge, UK.
Lewis, B. , and von Elbe, G. , 1961, Combustion, Flames and Explosions of Gases, 2nd ed., Academic Press, Cambridge, MA.
Wohl, K. , 1953, “ Quenching, Flash-Back, Blow-Off—Theory and Experiment,” Proc. Combust. Inst., 4(1), pp. 68–89. [CrossRef]
Lieuwen, T. , McDonell, V. , Petersen, E. , and Santavicca, D. , 2008, “ Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability,” ASME J. Eng. Gas Turbines Power, 130(1), p. 011506. [CrossRef]
Konle, M. , and Sattelmayer, T. , 2010, “ Time Scale Model for the Prediction of the Onset of Flame Flashback Driven by Combustion Induced Vortex Breakdown,” ASME J. Eng. Gas Turbines Power, 132(4), p. 041503. [CrossRef]
Peters, N. , 2000, Turbulent Combustion, Cambridge University Press, Cambridge, UK.
Watson, G. M. G. , Versailles, P. , and Bergthorson, J. M. , 2016, “ NO Formation in Premixed Flames of C1-C3 Alkanes and Alcohols,” Combust. Flame, 169, pp. 242–260. [CrossRef]
Watson, G. M. G. , Versailles, P. , and Bergthorson, J. M. , 2017, “ NO Formation in Rich Premixed Flames of C1-C4 Alkanes and Alcohols,” Proc. Combust. Inst., 36(1), pp. 627–635. [CrossRef]
Versailles, P. , Watson, G. M. G. , Lipardi, A. C. A. , and Bergthorson, J. M. , 2016, “ Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1-C4 Alkanes,” Combust. Flame, 165, pp. 109–124. [CrossRef]
Andrews, G. E. , and Bradley, D. , 1972, “ Determination of Burning Velocities: A Critical Review,” Combust. Flame, 18(1), pp. 133–153. [CrossRef]
Egolfopoulos, F. N. , Hansen, N. , Ju, Y. , Kohse-Höinghaus, K. , Law, C. K. , and Qi, F. , 2014, “ Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry,” Prog. Energy Combust. Sci., 43, pp. 36–67. [CrossRef]
Law, C. K. , 2012, “ Fuel Options for Next-Generation Chemical Propulsion,” AIAA J., 50(1), pp. 19–36. [CrossRef]
Wu, C. K. , and Law, C. K. , 1985, “ On the Determination of Laminar Flame Speeds From Stretched Flames,” Proc. Combust. Inst., 20(1), pp. 1941–1949. [CrossRef]
Benezech, L. , Bergthorson, J. M. , and Dimotakis, P. , 2009, “ Premixed Laminar C3H8- and C3H6-Air Stagnation Flames: Experiments and Simulations With Detailed Kinetic Models,” Proc. Combust. Inst., 32(1), pp. 1301–1309. [CrossRef]
Bergthorson, J. M. , Salusbury, S. D. , and Dimotakis, P. E. , 2011, “ Experiments and Modelling of Premixed Laminar Stagnation Flame Hydrodynamics,” J. Fluid Mech., 681, pp. 1–30. [CrossRef]
de Goey, L. P. H. , van Maaren, A. , and Quax, R. M. , 1993, “ Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner,” Combust. Sci. Technol., 92(1–3), pp. 201–207. [CrossRef]
Bosschaart, K. J. , and de Goey, L. P. H. , 2004, “ The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method,” Combust. Flame, 136(3), pp. 261–269. [CrossRef]
Price, T. W. , and Potter, J. H. , 1953, “ Factors Affecting Flame Velocity in Stoichiometric Carbon Monoxide Oxygen Mixtures,” Proc. Combust. Inst., 4(1), pp. 363–369. [CrossRef]
Bauwens, C. R. , Bergthorson, J. M. , and Dorofeev, S. B. , 2015, “ Experimental Study of Spherical-Flame Acceleration Mechanisms in Large-Scale Propane-Air Flames,” Proc. Combust. Inst, 35(2), pp. 2059–2066. [CrossRef]
Gu, X. J. , Haq, M. Z. , Lawes, M. , and Woolley, R. , 2000, “ Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures,” Combust. Flame, 121(1–2), pp. 41–58. [CrossRef]
Ranzi, E. , Frassoldati, A. , Grana, A. , Cuoci, A. , Faravelli, A. , Kelley, A. P. , and Law, C. K. , 2012, “ Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels,” Prog. Energy Combust. Sci., 38(4), pp. 468–501. [CrossRef]
Bergthorson, J. M. , and Thomson, M. J. , 2015, “ A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines,” Renewable Sustainable Energy Rev., 42, pp. 1393–1417. [CrossRef]
Veloo, P. S. , Wang, Y. L. , Egolfopoulos, F. N. , and Westbrook, C. K. , 2010, “ A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames,” Combust. Flame, 157(10), pp. 1989–2004. [CrossRef]
Veloo, P. S. , and Egolfopoulos, F. N. , 2011, “ Studies of n-Propanol, Iso-Propanol, and Propane Flames,” Combust. Flame, 158(3), pp. 501–510. [CrossRef]
Kochar, Y. , Seitzman, J. , Lieuwen, T. , Metcalfe, W. , Burke, S. , Curran, H. , Krejci, M. , Lowry, W. , Petersen, E. , and Bourque, G. , 2011, “ Laminar Flame Speed Measurements and Modeling of Alkane Blends at Elevated Pressures With Various Diluents,” ASME Paper No. GT2011-45122.
Santner, J. , Dryer, F. L. , and Ju, Y. , 2013, “ The Effects of Water Dilution on Hydrogen, Syngas, and Ethylene Flames at Elevated Pressure,” Proc. Combust. Inst., 34(1), pp. 719–726. [CrossRef]
Sun, H. , Yang, S. I. , Jomaas, G. , and Law, C. K. , 2007, “ High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion,” Proc. Combust. Inst., 31(1), pp. 439–446. [CrossRef]
Tse, S. D. , Zhu, D. L. , and Law, C. K. , 2000, “ Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres,” Proc. Combust. Inst., 28(2), pp. 1793–1800. [CrossRef]
Lowry, W. , de Vries, J. , Krejci, M. , Petersen, E. L. , Serinyel, Z. , Metcalfe, W. , Curran, H. , and Bourque, G. , 2011, “ Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures,” ASME J. Eng. Gas Turbines Power, 133(9), p. 91501. [CrossRef]
Frenklach, M. , Wang, H. , and Rabinowitz, M. J. , 1992, “ Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method-Combustion of Methane,” Prog. Energy Combust. Sci., 18(1), pp. 47–73. [CrossRef]
Frenklach, M. , 2007, “ Transforming Data Into Knowledge—Process Informatics for Combustion Chemistry,” Proc. Combust. Inst., 31(1), pp. 125–140. [CrossRef]
Qin, X. , Kobayashi, H. , and Niioka, T. , 2000, “ Laminar Burning Velocity of Hydrogen-Air Premixed Flames at Elevated Pressure,” Exp. Therm. Fluid Sci., 21(1–3), pp. 58–63. [CrossRef]
Natarajan, J. , Kochar, Y. , Lieuwen, T. , and Seitzman, J. , 2009, “ Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures,” Proc. Combust. Inst., 32(1), pp. 1261–1268. [CrossRef]
Natarajan, J. , Lieuwen, T. , and Seitzman, J. , 2007, “ Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure,” Combust. Flame, 151(1–2), pp. 104–119. [CrossRef]
Egolfopoulos, F. N. , Cho, P. , and Law, C. K. , 1989, “ Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures,” Combust. Flame, 76(3–4), pp. 375–391. [CrossRef]
Zhu, D. L. , Egolfopoulos, F. N. , and Law, C. K. , 1989, “ Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature,” Proc. Combust. Inst., 22(1), pp. 1537–1545. [CrossRef]
Bergthorson, J. M. , 2005, “ Experiments and Modeling of Impinging Jets and Premixed Hydrocarbon Flames,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
Egolfopoulos, F. N. , Zhang, H. , and Zhang, Z. , 1997, “ Wall Effects on the Propagation and Extinction of Steady, Strained, Laminar Premixed Flames,” Combust. Flame, 109(1–2), pp. 237–252. [CrossRef]
Versailles, P. , and Bergthorson, J. M. , 2012, “ Optimized Laminar Axisymmetrical Nozzle Design Using a Numerically-Validated Thwaites Method,” ASME J. Fluids Eng., 134(10), p. 101203.
ASME, 1998, “ ASME Boiler and Pressure Vessel Code,” American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee, New York.
Brookhaven National Laboratory, 2008, “ Guide for Glass and Plastic Window Design for Pressure Vessels,” Brookhaven National Laboratory Upton, NY.
Benezech, L. , 2008, “ Premixed Hydrocarbon Stagnation Flames: Experiments and Simulations to Validate Combustion Chemical-Kinetic Models,” Engineer's thesis, California Institute of Technology, Pasadena, CA.
Versailles, P. , 2017, “ CH Formation in Premixed Flames of C1–C4 Alkanes: Assessment of Current Chemical Modelling Capability Against Experiments,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
Connelly, B. C. , Bennett, B. A. V. , Smooke, M. D. , and Long, M. B. , 2009, “ A Paradigm Shift in the Interaction of Experiments and Computations in Combustion Research,” Proc. Combust. Inst., 32(1), pp. 879–886. [CrossRef]
Kee, R. J. , Miller, J. A. , Evans, G. H. , and Dixon-Lewis, G. , 1989, “ A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames,” Proc. Combust. Inst., 22(2), pp. 1479–1494. [CrossRef]
Bergthorson, J. M. , and Dimotakis, P. E. , 2007, “ Premixed Laminar C1–C2 Stagnation Flames: Experiments and Simulations With Detailed Thermochemistry Models,” Proc. Combust. Inst., 31(1), pp. 1139–1147. [CrossRef]
Bergthorson, J. M. , and Dimotakis, P. E. , 2006, “ Particle Velocimetry in High-Gradient/High-Curvature Flows,” Exp. Fluids, 41(2), pp. 255–263. [CrossRef]
Watson, G. M. G. , Munzar, J. D. , and Bergthorson, J. M. , 2013, “ Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions,” Energy Fuels, 27(11), pp. 7031–7043. [CrossRef]
Sung, C. J. , Law, C. K. , and Axelbaum, R. L. , 1994, “ Thermophoretic Effects on Seeding Particles in LDV Measurements of Flames,” Combust. Sci. Technol., 99(1–3), pp. 119–132. [CrossRef]
Sung, C. J. , Kistler, J. S. , Nishioka, M. , and Law, C. K. , 1996, “ Further Studies on Effects of Thermophoresis on Seeding Particles in LDV Measurements of Strained Flames,” Combust. Flame, 105(1–2), pp. 189–201. [CrossRef]
University of California at San Diego, 2016, “ Chemical-Kinetic Mechanisms for Combustion Applications,” Mechanical and Aerospace Engineering (Combustion Research), UC San Diego, La Jolla, CA, http://combustion.ucsd.edu
Gokulakrishnan, P. , Fuller, C. C. , Klassen, M. S. , Joklik, R. G. , Kochar, Y. N. , Vaden, S. N. , Lieuwen, T. C. , and Seitzman, J. M. , 2014, “ Experiments and Modeling of Propane Combustion With Vitiation,” Combust. Flame, 161(8), pp. 2038–2053. [CrossRef]
Vagelopoulos, C. M. , and Egolfopoulos, F. N. , 1998, “ Direct Experimental Determination of Laminar Flame Speeds,” Proc. Combust. Inst., 27(1), pp. 513–519. [CrossRef]
Zhao, Z. , Kazakov, A. , Li, J. , and Dryer, F. L. , 2004, “ The Initial Temperature and N2 Dilution Effect on the Laminar Flame Speed of Propane/Air,” Combust. Sci. Technol., 176(10), pp. 1705–1723. [CrossRef]
Zhou, C. W. , Li, Y. , O'Connor, E. , Somers, K. P. , Thion, S. , Keesee, C. , Mathieu, O. , Petersen, E. L. , DeVerter, T. A. , Oehlschlaeger, M. A. , Kukkadapu, G. , Sung, C. J. , Alrefae, M. , Khaled, F. , Farooq, A. , Dirrenberger, P. , Glaude, P. A. , Battin-Leclerc, F. , Santner, J. , Ju, Y. , Held, T. , Haas, F. M. , Dryer, F. L. , and Curran, H. J. , 2016, “ A Comprehensive Experimental and Modeling Study of Isobutene Oxidation,” Combust. Flame, 167, pp. 353–379. [CrossRef]
Zhang, Y. , Mathieu, O. , Petersen, E. L. , Bourque, G. , and Curran, H. J. , 2017, “ Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data,” Combust. Flame, 182, pp. 122–141. [CrossRef]
El Bakali, A. , Pillier, L. , Desgroux, P. , Lefort, B. , Gasnot, L. , Pauwels, J. F. , and da Costa, I. , 2006, “ NO Prediction in Natural Gas Flames Using GDF–Kin3.0 Mechanism NCN and HCN Contribution to Prompt-NO Formation,” Fuel, 85(7–8), pp. 896–909. [CrossRef]
El Bakali, A. , Dagaut, P. , Pillier, L. , Desgroux, P. , Pauwels, J. F. , Rida, A. , and Meunier, P. , 2004, “ Experimental and Modeling Study of the Oxidation of Natural Gas in a Premixed Flame, Shock Tube, and Jet-Stirred Reactor,” Combust. Flame, 137(1–2), pp. 109–128. [CrossRef]
Konnov, A. A. , 2009, “ Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism,” Combust. Flame, 156(11), pp. 2093–2105. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Jet-wall stagnation burner

Grahic Jump Location
Fig. 2

Computer-aided design model of the apparatus

Grahic Jump Location
Fig. 3

Negative of a particle tracking velocimetry image obtained in a cold, nonreacting flow

Grahic Jump Location
Fig. 4

Profiles of axial particle velocity. P = 2 atm (first column), P = 4 atm (second column), P = 8 atm (third column), and P = 16 atm (fourth column). ϕ = 0.7 (first row), ϕ = 0.8 (second row), ϕ = 1.0 (third row), and ϕ = 1.3 (fourth row).

Grahic Jump Location
Fig. 5

Ratio of numerical to experimental values of Su for 2 atm flames. Su,num/Su,exp = 1, shown by the dashed line, indicates exact agreement of the predictions with the experimental data. The shaded gray band presents the error resulting from the uncertainties in the boundary conditions, and PTV evaluation of Su.

Grahic Jump Location
Fig. 6

Ratio of numerical to experimental values of Su for 4 atm flames. Same legend as Fig. 5.

Grahic Jump Location
Fig. 7

Ratio of numerical to experimental values of Su for 8 atm flames. Same legend as Fig. 5.

Grahic Jump Location
Fig. 8

Ratio of numerical to experimental values of Su for 16 atm flames. Same legend as Fig. 5.

Grahic Jump Location
Fig. 9

(a) Logarithmic sensitivity of Su to the value of the boundary conditions (xj) and (b) contribution of the individual boundary conditions to the overall error on Su at P = 2 atm. Legend: ϕ = 0.7 (white), ϕ = 0.8 (light gray), ϕ = 1.0 (dark gray), and ϕ = 1.3 (black).

Grahic Jump Location
Fig. 10

(a) Logarithmic sensitivity of Su to the value of the boundary conditions (xj) and (b) contribution of the individual boundary conditions to the overall error on Su at P = 4 atm. Same legend as Fig. 9.

Grahic Jump Location
Fig. 11

(a) Logarithmic sensitivity of Su to the value of the boundary conditions (xj) and (b) contribution of the individual boundary conditions to the overall error on Su at P = 8 atm. Same legend as Fig. 9.

Grahic Jump Location
Fig. 12

(a) Logarithmic sensitivity of Su to the value of the boundary conditions (xj) and (b) contribution of the individual boundary conditions to the overall error on Su at P = 16 atm. Same legend as Fig. 9.

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In