0
research-article

ON THE DESIGN, MANUFACTURE AND PREMATURE FAILURE OF A METAL MESH FOIL THRUST BEARING - HOW CONCEPTS THAT WORK ON PAPER, ACTUALLY DO NOT.

[+] Author and Article Information
Travis Cable

Research Assistant, Mechanical Engineering Dept., Texas A&M University, College Station, TX 77845, USA
cable.travis@gmail.com

Luis San Andres

Mast-Childs Chair Professor, Fellow ASME, Mechanical Engineering Dept., Texas A&M University, College Station, TX 77845, USA
lsanandres@tamu.edu

1Corresponding author.

ASME doi:10.1115/1.4041137 History: Received July 03, 2018; Revised July 18, 2018

Abstract

Oil-free micro turbomachinery (OFT) implements compliant foil bearings because of their minute drag and ability to operate in extreme (high or low) temperature. Prominent to date, bump-type foil bearings integrate an underspring thin metal structure that provides resilience and material damping; and while the rotor is airborne, acts in series with the stiffness and damping of the gas film. The design and manufacturing of foil bearings remains costly as it demands of extensive engineering and actual experience. Alternative foil bearing configurations, less costly and easier to manufacture, are highly desirable to enable widespread usage of OFT. This manuscript details the design and manufacturing of a novel Rayleigh-step metal mesh foil thrust bearing (MMFTB) as well as its testing on a dedicated rig. Metal mesh structures offer significant material structural damping and can be easily procured at a fraction of the cost of a typical bump foil strip layer. In concept, and on paper, the mesh sheets and the top foil lay flat against the bearing carrier, giving a false sense of uniformity in the design process. In actuality, a designer must consider the manufactured states of the individual components and how they assemble. Due to multiple failures, a redesign of the bearing intends to overcome the existing flaws (highlighted herein) by incorporating a thicker top foil that is well anchored (to better withstand the effects of windage), a robust sacrificial coating, and a hydrodynamic wedge accomplished via a circumferential taper on each pad.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In