Large eddy simulation of a premixed flame in hot vitiated crossflow with analytically reduced chemistry

[+] Author and Article Information
Oliver Schulz

CAPS Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland

Nicolas Noiray

CAPS Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland

1Corresponding author.

ASME doi:10.1115/1.4041205 History: Received July 26, 2018; Revised July 26, 2018


This numerical study deals with a premixed ethylene-air jet at 300 K injected into a hot vitiated crossflow at 1500 K and atmospheric pressure. The reactive jet in crossflow (RJICF) was simulated with compressible 3-D large eddy simulations (LES) with an analytically reduced chemistry (ARC) mechanism and the dynamic thickened flame (DTF) model. ARC enables simulations of mixed combustion modes, such as autoignition and flame propagation, that are both present in this RJICF. 0-D and 1-D simulations provide a comparison with excellent agreement between ARC and detailed chemistry in terms of autoignition time and laminar flame speed. The effect of the DTF model on autoignition was investigated for varying species compositions and mesh sizes. Comparisons between LES and experiments are in good agreement for average velocity distributions and jet trajectories; LES remarkably capture experimentally observed flame dynamics. An analysis of the simulated RJICF shows that the leeward propagating flame has a stable flame root close to the jet exit. The lifted windward flame, on the contrary, is anchored in an intermittent fashion due to autoignition flame stabilization. The windward flame base convects downstream and is "brought back" by autoignition alternately. These autoignition events occur close to a thin layer that is associated with radical build-up and that stretches down to the jet exit.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In