Research Papers: Gas Turbines: Turbomachinery

Gas Turbine Fouling Tests: Review, Critical Analysis, and Particle Impact Behavior Map

[+] Author and Article Information
Alessio Suman, Nicola Casari, Elettra Fabbri, Michele Pinelli

Dipartimento di Ingegneria,
Università degli Studi di Ferrara,
Ferrara 44122, Italy

Luca di Mare

St John's College,
University of Oxford,
St Giles,
Oxford OX1 3JP, UK

Francesco Montomoli

Imperial College London,
London SW7 2AZ, UK

Contributed by the Turbomachinery Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 29, 2018; final manuscript received August 10, 2018; published online November 29, 2018. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(3), 032601 (Nov 29, 2018) (18 pages) Paper No: GTP-18-1525; doi: 10.1115/1.4041282 History: Received July 29, 2018; Revised August 10, 2018

Fouling affects gas turbine operation, and airborne or fuel contaminants, under certain conditions, become very likely to adhere to surfaces if impact takes place. Particle sticking implies the change in shape in terms of roughness of the impinged surface. The consequences of these deposits could be dramatic: these effects can shut an aircraft engine down or derate a land-based power unit. This occurrence may happen due to the reduction of the compressor flow rate and the turbine capacity, caused by a variation in the HPT nozzle throat area (geometric blockage due to the thickness of the deposited layer and the aerodynamic blockage due to the increased roughness, and in turn boundary layer). Several methods to quantify particle sticking have been proposed in literature so far, and the experimental data used for their validation vary in a wide range of materials and conditions. The experimental analyzes have been supported by (and have given inspiration to) increasingly realistic mathematical models. Experimental tests have been carried out on (i) a full scale gas turbine unit, (ii) wind tunnel testing or hot gas facilities using stationary cascades, able to reproduce the same conditions of gas turbine nozzle operation and finally, (iii) wind tunnel testing or hot gas facilities using a coupon as the target. In this review, the whole variety of experimental tests performed are gathered and classified according to composition, size, temperature, and particle impact velocity. Using particle viscosity and sticking prediction models, over seventy (70) tests are compared with each other and with the model previsions providing a useful starting point for a comprehensive critical analysis. Due to the variety of test conditions, the related results are difficult to be pieced together due to differences in particle material and properties. The historical data of particle deposition obtained over thirty (30) years are classified using particle kinetic energy and the ratio between particle temperature and its softening temperature. Qualitative thresholds for the distinction between particle deposition, surface erosion, and particle break-up, based on particle properties and impact conditions, are identified. The outcome of this paper can be used for further development of sticking models or as a starting point for new insight into the problem.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Suman, A. , Morini, M. , Aldi, N. , Casari, N. , Pinelli, M. , and Spina, P. R. , 2017, “ A Compressor Fouling Review Based on an Historical Survey of Asme Turbo Expo Papers,” ASME J. Turbomach., 139(4), p. 041005. [CrossRef]
Clarkson, R. J. , Majewicz, E. J. E. , and Mack, P. , 2016, “ A Re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 230(12), pp. 2274–2291. [CrossRef]
Dunn, M. G. , 2012, “ Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash,” ASME J. Turbomach., 134(5), p. 051001. [CrossRef]
De Giorgi, M. G. , Campilongo, S. , and Ficarella, A. , 2015, “ Predictions of Operational Degradation of the Fan Stage of an Aircraft Engine Due to Particulate Ingestion,” ASME J. Eng. Gas Turbines Power, 137 (5), p. 052603. [CrossRef]
Allaby, M. , 2013, A Dictionary of Geology and Earth Sciences, Oxford University Press, Oxford, UK.
Cohn, A. , 1982, “ Effect of Gas and Metal Temperatures on Gas Turbine Deposition,” ASME Paper No. 82-JPGC-GT-4.
Whitlow, G. A. , Lee, S. Y. , Mulik, P. R. , Wenglarz, R. A. , Sherlock, T. P. , and Cohn, A. , 1983, “ Combustion Turbine Deposition Observations From Residual and Simulated Residual Oil Studies,”ASME J. Eng. Gas Turbines Power, 105(1), pp. 88–96. [CrossRef]
Wenglarz, R. A. , and Cohn, A. , 1983, “ Turbine Deposition Evaluations Using Simplified Tests,” ASME Paper No. 83-GT-115.
Wenglarz, R. A. , 1987, “ Turbine Disposition, Erosion and Corrosion Evaluations Using a Simplified Test Approach,” ASME Paper No. 87-GT-214.
Wenglarz, R. A. , 1987, “ Direct Coal-Fueled Combustion Turbines,” ASME Paper No. 87-GT-269.
Kimura, S. G. , Spiro, C. L. , and Chen, C. C. , 1987, “ Combustion and Deposition in Coal-Fired Turbines,” ASME J. Eng. Gas Turbines Power, 109(3), pp. 319–324. [CrossRef]
Spiro, C. L. , Kimura, S. G. , and Chen, C. C. , 1987, “ Ash Behavior During Combustion and Deposition in Coal-Fueled Gas Turbines,” ASME J. Eng. Gas Turbines Power, 109 (3), pp. 325–330. [CrossRef]
Wenglarz, R. A. , and Fox, R. G., Jr. , 1990, “ Physical Aspects of Deposition From Coal-Water Fuels Under Gas Turbine Conditions,” ASME J. Eng. Gas Turbines Power, 112(1), pp. 9–14. [CrossRef]
Wenglarz, R. A. , and Fox, R. G., Jr. , 1990, “ Chemical Aspects of Deposition/Corrosion From Coal-Water Fuels Under Gas Turbine Conditions,” ASME J. Eng. Gas Turbines Power, 112(1), pp. 1–8. [CrossRef]
Wenglarz, R. A. , 1992, “ An Approach for Evaluation of Gas Turbine Deposition,” ASME J. Eng. Gas Turbines Power, 114(2), pp. 230–234. [CrossRef]
Chin, J. S. , and Lefebvre, A. H. , 1993, “ Influence of Flow Conditions on Deposits From Heated Hydrocarbon Fuels,” ASME J. Eng. Gas Turbines Power, 115(3), pp. 433–438. [CrossRef]
Nagarajan, R. , and Anderson, R. J. , 1988, “ Effect of Coal Constituents on the Liquid-Assisted Capture of Impacting Ash Particles in Direct Coal-Fired Gas Turbines,” ASME Paper No. 88-GT-192.
Dunn, M. G. , Padova, C. , Moeller, J. E. , and Adams, R. M. , 1987, “ Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment,” ASME J. Eng. Gas Turbines Power, 109(3), pp. 336–343. [CrossRef]
Kim, J. , Dunn, M. G. , Baran, A. J. , Wade, D. P. , and Tremba, E. L. , 1993, “ Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines,” ASME J. Eng. Gas Turbines Power, 115(3), pp. 641–651. [CrossRef]
Dunn, M. G. , Baran, A. J. , and Miatech, J. , 1996, “ Operation of Gas Turbine Engines in Volcanic Ash Clouds,” ASME J. Eng. Gas Turbines Power, 118(4), pp. 724–731. [CrossRef]
Shinozaki, M. , Roberts, K. A. , Van De Goor, B. , and William Clyne, T. , 2013, “ Deposition of Ingested Volcanic Ash on Surfaces in the Turbine of a Small Jet Engine,” Adv. Eng. Mater., 15(10), pp. 986–994.
Anderson, R. J. , Romanowsky, C. J. , and France, J. E. , 1984, “ The Adherence of Ash Particles from the Combustion of Micronized Coal,” Morgantown Energy Technology Center, Morgantown, WV, USA, Report No. DOE/METC-85/2007.
Ross, J. S. , Anderson, R. J. , and Nagarajan, R. , 1988, “ Effect of Sodium on Deposition in a Simulated Combustion Gas Turbine Environment,” Energy Fuels, 2(3), pp. 282–289. [CrossRef]
Anderson, R. J. , Logan, R. G. , Meyer, C. T. , and Dennis, R. A. , 1990, “ A Combustion/Deposition Entrained Reactor for High-Temperature/Pressure Studies of Coal and Coal Minerals,” Rev. Sci. Instrum., 61(4), pp. 1294–1302. [CrossRef]
Richards, G. A. , Logan, R. G. , Meyer, C. T. , and Anderson, R. J. , 1992, “ Ash Deposition at Coal-Fired Gas Turbine Conditions: Surface and Combustion Temperature Effects,” ASME J. Eng. Gas Turbines Power, 114(1), pp. 132–138. [CrossRef]
Weaver, M. M. , Dunn, M. G. , and Heffernan, T. , 1996, “ Experimental Determination of the Influence of Foreign Particle Ingestion on the Behavior of Hot-Section Components Including Lamilloy,” ASME Paper No. 96-GT-337.
Jensen, J. W. , Squire, S. W. , Bons, J. P. , and Fletcher, T. H. , 2005, “ Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility,” ASME J. Turbomach., 127(3), pp. 462–470. [CrossRef]
Bons, J. P. , Crosby, J. , Wammack, J. E. , Bentley, B. I. , and Fletcher, T. H. , 2007, “ High-Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels,” ASME J. Eng. Gas Turbines Power, 129(1), pp. 135–143. [CrossRef]
Wammack, J. E. , Crosby, J. , Fletcher, D. , Bons, J. P. , and Fletcher, T. H. , 2008, “ Evolution of Surface Deposits on a High Pressure Turbine Blade—Part I: Physical Characteristics,” ASME J. Turbomach., 130(2), p. 021020. [CrossRef]
Crosby, J. M. , Lewis, S. , Bons, J. P. , Ai, W. , and Fletcher, T. H. , 2008, “ Effects of Temperature and Particle Size on Deposition in Land Based Turbines,” ASME J. Eng. Gas Turbines Power, 130(5), p. 051503. [CrossRef]
Ai, W. , Laycock, R. G. , Rappleye, D. S. , Fletcher, T. H. , and Bons, J. P. , 2011, “ Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Fly ash Near Film Cooling Holes,” Energy Fuels, 25(3), pp. 1066–1076. [CrossRef]
Ai, W. , Murray, N. , Fletcher, T. H. , Harding, S. , Lewis, S. , and Bons, J. P. , 2012, “ Deposition Near Film Cooling Holes on a High Pressure Turbine Vane,” ASME J. Turbomach., 134(4), p. 041013. [CrossRef]
Ai, W. , Murray, N. , Fletcher, T. H. , Harding, S. , and Bons, J. P. , 2012, “ Effect of Hole Spacing on Deposition of Fine Coal Fly ash Near Film Cooling Holes,” ASME J. Turbomach., 134(4), p. 041021. [CrossRef]
Laycock, R. G. , and Fletcher, T. H. , 2013, “ Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment.,” ASME J. Turbomach., 135(2), p. 021003. [CrossRef]
Laycock, R. , and Fletcher, T. H. , 2016, “ Independent Effects of Surface and Gas Temperature on Coal Fly Ash Deposition in Gas Turbines at Temperatures Up to 1400 °C,” ASME J. Eng. Gas Turbines Power, 138(2), p. 2429919.
Boulanger, A. , Patel, H. , Hutchinson, J. , DeShong, W. , Xu, W. , Ng, W. , and Ekkad, S. , 2016, “ Preliminary Experimental Investigation of Initial Onset of Sand Deposition in the Turbine Section of Gas Turbines,” ASME Paper No. GT2016-56059.
Dean, J. , Taltavull, C. , and Clyne, T. , 2016, “ Influence of the Composition and Viscosity of Volcanic Ashes on Their Adhesion Within Gas Turbine Aeroengines,” Acta Mater., 109, pp. 8–16. [CrossRef]
Giehl, C. , Brooker, R. A. , Marxer, H. , and Nowak, M. , 2017, “ An Experimental Simulation of Volcanic Ash Deposition in Gas Turbines and Implications for Jet Engine Safety,” Chem. Geol., 461, pp. 160–170. [CrossRef]
Taltavull, C. , Dean, J. , and Clyne, T. W. , 2016, “ Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines,” Adv. Eng. Mater., 18(5), pp. 803–813. [CrossRef]
Barker, B. , Hsu, K. , Varney, B. , Boulanger, A. , Hutchinson, J. , and Ng, W. F. , 2017, “ An Experiment-Based Sticking Model for Heated Sand,” ASME Paper No. GT2017-64421.
Boulanger, A. , Hutchinson, J. , Ng, W. F. , Ekkad, S. V. , Keefe, M. J. , Xu, W. , Barker, B. , and Hsu, K. , 2017, “ Experimental Based Empirical Model of the Initial Onset of Sand Deposits on hastelloy-X from 1000 °C to 1100 °C Using Particle Tracking,” ASME Paper No. GT2017-64480.
Raj, R. , 1983, “ Deposition Results of a Transpiration Air-Cooled Turbine Vane Cascade in a Contaminated Gas Stream,” ASME J. Eng. Gas Turbines Power, 105(4), pp. 826–833. [CrossRef]
Raj, R. , and Moskowitz, S. , 1984, “ Experimental Studies of Deposition by Electrostatic Charge on Turbine Blades,” ASME Paper No. 84-GT-159.
Smith, C. , Barker, B. , Clum, C. , and Bons, J. P. , 2010, “ Deposition in a Turbine Cascade With Combusting Flow,” ASME Paper No. GT2010-22855.
Webb, J. , Casaday, B. , Barker, B. , Bons, J. P. , Gledhill, A. D. , and Padture, N. P. , 2012, “ Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types,” ASME J. Turbomach., 135(2), p. 021033. [CrossRef]
Casaday, B. P. , Prenter, R. , Bonilla, C. , Lawrence, M. , Clum, C. , Ameri, A. , and Bons, J. P. , 2013, “ Deposition With Hot Streaks in an Uncooled Turbine Vane Passage,” ASME J. Turbomach., 136(4), p. 041017. [CrossRef]
Prenter, R. , Whitaker, S. M. , Ameri, A. , and Bons, J. P. , 2014, “ The Effects of Slot Film Cooling on Deposition on a Nozzle Guide Vane,” ASME Paper No. GT2014-27171.
Whitaker, S. M. , Prenter, R. , and Bons, J. P. , 2015, “ T the Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes,” ASME J. Turbomach., 137(12), p. 121001. [CrossRef]
Lundgreen, R. , Sacco, C. , Prenter, R. , and Bons, J. P. , 2016, “ Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig,” ASME Paper No. GT2016-57560.
Wang, X. Y. , Pu, J. , Yuan, R. M. , and Wang, J. H. , 2016, “ Combined Influence of Surface Deposition and Hole-Blockage on Film-Cooling Performances,” ASME Paper No. GT2016-56902.
Wylie, S. , Bucknell, A. , Forsyth, P. , McGilvray, M. , and Gillespie, D. R. H. , 2017, “ Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine Representative Cooling Passages,” ASME J. Turbomach., 139(3), p. 031008. [CrossRef]
Whitaker, S. M. , Lundgreen, R. K. , and Bons, J. P. , 2017, “ Effects of Metal Surface Temperature on Deposition-Induced Flow Blockage in a Vane Leading Edge Cooling Geometry,” ASME Paper No. GT2017-64946.
Whitaker, S. M. , Peterson, B. , Miller, A. F. , and Bons, J. P. , 2016, “ The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry,” ASME Paper No. GT2016-57413.
Bunker, R. S. , 2017, “ Evolution of Turbine Cooling,” ASME Paper No. GT2017-63205.
Kotwal, R. , and Tabakoff, W. , 1981, “ A New Approach for Erosion Prediction Due to Fly Ash,” J. Eng. Power, 103(2), pp. 265–270. [CrossRef]
Tabakoff, W. , 1984, “ Review-Turbomachinery Performance Deterioration Exposed to Solid Particulates Environment,” ASME J. Fluids Eng., 106(2), pp. 125–134. [CrossRef]
Tabakoff, W. , Hamed, A. , Metwally, M. , and Pasin, M. , 1992, “ High-Temperature Erosion Resistance of Coatings for Gas Turbine,” ASME J. Eng. Gas Turbines Power, 114(2), pp. 242–249. [CrossRef]
Mezheritsky, A. D. , and Sudarev, A. V. , 1990, “ The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors,” ASME Paper No. 90-GT-103.
Senior, C. L. , and Srinivasachar, S. , 1995, “ Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking,” Energy Fuels, 9(2), pp. 277–283. [CrossRef]
Ahluwalia, R. K. , Im, K. H. , Chuang, C. F. , and Hajduk, J. C. , 1986, “ Particle and Vapor Deposition in Coal-Fired Gas Turbines,” ASME Paper No. 86-GT-239.
Ahluwalia, R. K. , Im, K. H. , and Wenglarz, R. A. , 1989, “ Flyash Adhesion in Simulated Coal-Fired Gas Turbine Environment,” ASME J. Eng. Gas Turbines Power, 111(4), pp. 672–678. [CrossRef]
Sreedharan, S. S. , and Tafti, D. K. , 2011, “ Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath,” Int. J. Heat Fluid Flow, 32(1), pp. 201–211. [CrossRef]
Singh, S. , and Tafti, D. K. , 2016, “ Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct,” ASME J. Eng. Gas Turbines Power, 138(7), p. 072606. [CrossRef]
Srinivasachar, S. , Helble, J. J. , and Boni, A. , 1991, “ An Experimental Study of the Inertial Deposition of Ash Under Coal Combustion Conditions,” Symp. (Int.) Combust., 23(1), pp. 1305–1312. [CrossRef]
Jiang, L. Y. , Han, Y. , and Patnaik, P. , 2018, “ Characteristics of Volcanic Ash in a Gas Turbine Combustor and Nozzle Guide Vanes,” ASME J. Eng. Gas Turbines Power, 140(7), p. 071502.
Brach, R. M. , and Dunn, P. F. , 1992, “ A Mathematical Model of the Impact and Adhesion of Microspheres,” Aerosol Sci. Technol., 16(1), pp. 51–64. [CrossRef]
Johnson, K. L. , Kendall, K. , and Roberts, A. D. , 1971, “ Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. A, 324(1558), pp. 301–313. [CrossRef]
El-Batsh, H. , 2001, “ Modeling Particle Deposition on Compressor and Turbine Blade Surfaces,” Ph.D. thesis, Vienna University of Technology, Vienna, Austria.
Ai, W. , 2009, “ Deposition of Particulate from Coal-Derived Syngas on Gas Turbine Blades Near Film Cooling Holes,” Ph.D. thesis, Brigham Young University, Provo, UT.
Bons, J. P. , Prenter, R. , and Whitaker, S. , 2017, “ A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery,” ASME J. Turbomach., 139(8), p. 081009. [CrossRef]
Prenter, R. , Ameri, A. , and Bons, J. P. , 2017, “ Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks,” ASME J. Turbomach., 139(9), p. 091005. [CrossRef]
Forsyth, P. R. , Gillespie, D. R. H. , and McGilvray, M. , 2018, “ Development and Applications of a Coupled Particle Deposition—Dynamic Mesh Morphing Approach for the Numerical Simulation of Gas Turbine Flows,” ASME J. Eng. Gas Turbines Power, 140(2), p. 022603. [CrossRef]
Agati, G. , Borello, D. , Rispoli, F. , and Venturini, P. , 2016, “ An Innovative Approach to Model Temperature Influence on Particle Deposition in Gas Turbines,” ASME Paper No. GT2016-57997.
Yu, K. , and Tafti, D. , 2017, “ Size and Temperature Dependent Deposition Model of Micro-Sized Sand Particles,” ASME Paper No. GT2017-63792.
Yu, K. , and Tafti, D. , 2016, “ Impact Model for Micrometer-Sized Sand Particles,” Powder Technol., 294, pp. 11–21. [CrossRef]
Mysen, B. O. , 1988, “ Structure and Properties of Silicate Melts,” Structure and Properties of Silicate Melts, Elsevier, New York, p. 368.
Mills, K. C. , and Sridhar, S. , 1999, “ Viscosities of Ironmaking and Steelmaking Slags,” Ironmaking Steelmaking, 26(4), pp. 262–268. [CrossRef]
Duffy, J. A. , and Ingram, M. D. , 1975, “ Optical Basicity—IV: Influence of Electronegativity on the Lewis Basicity and Solvent Properties of Molten Oxyanion Salts and Glasses,” J. Inorg. Nucl. Chem., 37 (5), pp. 1203–1206. [CrossRef]
Zhang, G.-H. , and Chou, K.-C. , 2010, “ Simple Method for Estimating the Electrical Conductivity of Oxide Melts With Optical Basicity,” Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci., 41(1), pp. 131–136. [CrossRef]
Giordano, D. , Russell, J. K. , and Dingwell, D. B. , 2008, “ Viscosity of Magmatic Liquids: A Model,” Earth Planet. Sci. Lett., 271(1–4), pp. 123–134. [CrossRef]
ASTM, 2004, “ Standard Test Method for Fusibility of Coal and Coke Ash,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No. ASTM D1857-04.
Yin, C. , Luo, Z. , Ni, M. , and Cen, K. , 1998, “ Predicting Coal Ash Fusion Temperature With a Back-Propagation Neural Network Model,” Fuel, 77(15), pp. 1777–1782. [CrossRef]
Laycock, R. G. , and Fletcher, T. H. , 2017, “ Erratum: Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment [ASME J. Turbomach., 135, 2, (2012) (021003). DOI: 10.1115/1.4006639],” ASME J. Turbomach., 139(12), p. 127001. [CrossRef]
Laycock, R. G. , and Fletcher, T. H. , 2017, “ Erratum: ‘Erratum: ‘Time-Dependent Deposition Characteristics of Fine Coal Fly Ash in a Laboratory Gas Turbine Environment' [ASME J. Turbomach., 2012, 135(2), p. 021003; DOI:10.1115/1.4006639]' [ASME. J. Turbomach., 2017, 139(12), p. 127001; DOI: 10.1115/1.4037911],” ASME J. Turbomach., 140(4), p. 047001.
Bottinga, Y. , Weill, D. , and Richet, P. , 1982, “ Density Calculations for Silicate Liquids—I: Revised Method for Aluminosilicate Compositions,” Geochim. Cosmochim. Acta, 46(6), pp. 909–919. [CrossRef]
Mills, K. C. , and Keene, B. J. , 1987, “ Physical Properties of BOS Slags,” Int. Mater. Rev., 32 (1), pp. 1–120. [CrossRef]
Ciprian, D. , and Grigore, B. , 2013, “ Classification and Characterization of Basalts of Branisca and Dobra—Romania, for Capitalization,” 1st International Conference on Industrial and Manufacturing Technologies (INMAT '13), Vouliagmeni, Athens, Greece May 14–16, pp. 64–69.
Taylor, H. E. , and Lichte, F. E. , 1980, “ Chemical Composition of Mount St. Helens Volcanic Ash,” Geophys. Res. Lett., 7(11), pp. 949–952. [CrossRef]
Guha, A. , 2008, “ Transport and Deposition of Particles in Turbulent and Laminar Flow,” Annu. Rev. Fluid Mech., 40(1), pp. 311–341. [CrossRef]
Bell, I. H. , Wronski, J. , Quoilin, S. , and Lemort, V. , 2014, “ Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp,” Ind. Eng. Chem. Res., 53(6), pp. 2498–508. [CrossRef] [PubMed]
Kueppers, U. , Cimarelli, C. , Hess, K.-U. , Taddeucci, J. , Wadsworth, F. B. , and Dingwell, D. B. , 2014, “ The Thermal Stability of Eyjafjallajökull Ash Versus Turbine Ingestion Test Sands,” J. Appl. Volcanol., 3(1), p. 4. [CrossRef]
Bas, M. J. L. , Maitre, R. W. L. , Streckeisen, A. , and Zanettin, B. , 1986, “ A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram,” J. Petrol., 27(3), pp. 745–750. [CrossRef]
Seetharaman, S. , Mukai, K. , and Sichen, D. , 2005, “ Viscosities of slags - An Overview,” Steel Res. Int., 76 (4), pp. 267–278. [CrossRef]
Hsieh, P. , Kwong, K. S. , and Bennett, J. , 2016, “ Correlation Between the Critical Viscosity and Ash Fusion Temperatures of Coal Gasifier Ashes,” Fuel Process. Technol., 142, pp. 13–26. [CrossRef]
ASTM, 2015, “ Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational Viscometer,” American Society for Testing and Materials International, West Conshohocken, PA, Standard No. ASTM D 2196-15.
Mills, K. C. , Hayashi, M. , Wang, L. , and Watanabe, T. , 2014, “ The Structure and Properties of Silicate Slags,” Treatise on Process Metallurgy: Volume 1 Process fundamentals, S . Seetharaman , A. McLean , and R . Guthrie , eds., Elsevier, Amsterdam, pp. 149–286.
Vargas, S. , Frandsen Fine Coal Flyash, F. J. , and Dam-Johansen, K. , 2001, “ Rheological Properties of High-Temperature Melts of Coal Ashes and Other Silicates,” Prog. Energy Combust. Sci., 27(3), pp. 237–429. [CrossRef]
Singh, T. , and Sundararajan, G. , 1990, “ The Erosion Behavior of 304 Stainless Steel at Elevated Temperatures,” Metall. Trans. A, 21(12), pp. 3187–3199. [CrossRef]
Sundararajan, G. , and Roy, M. , 1997, “ Solid Particle Erosion Behaviour of Metallic Materials at Room and Elevated Temperatures,” Tribol. Int., 30(5), pp. 339–359. [CrossRef]
Wellman, R. G. , and Nicholls, J. R. , 2004, “ High Temperature Erosion-Oxidation Mechanisms, Maps and Models,” Wear, 256(9–10), pp. 907–917. [CrossRef]
Shin, D. , and Hamed, A. , 2016, “ Advanced High Temperature Erosion Tunnel for Testing TBC and New Turbine Blade Materials,” ASME Paper No. GT2016-57922.
Goodwin, J. E. , Sage, W. , and Tilly, G. P. , 1969, “ Study of Erosion by Solid Particles,” Proc. Inst. Mech. Eng., 184(1), pp. 279–292. [CrossRef]
Bitter, J. G. A. , 1963, “ A Study of Erosion Phenomena Part I,” Wear, 6(1), pp. 5–21. [CrossRef]
Henry, C. , and Minier, J.-P. , 2014, “ Progress in Particle Resuspension From Rough Surfaces by Turbulent Flows,” Prog. Energy Combust. Sci., 45(C), pp. 1–53. [CrossRef]
Sacco, C. , Bowen, C. , Lundgreen, R. , Bons, J. P. , Ruggiero, E. , Allen, J. , and Bailey, J. , 2017, “ Dynamic Similarity in Turbine Deposition Testing and the Role of Pressure,” ASME Paper No. GT2017-64961.
Zaba, T. , and Lombardi, P. , 1984, “ Experience in the Operation of Air Filters in Gas Turbine Installations,” ASME Paper No. 84-GT-39.
Tarabrin, A. P. , Schurovsky, V. A. , Bodrov, A. I. , and Stalder, J.-P. , 1998, “ Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters,” ASME Paper No. 98-GT-416.
Syverud, E. , Brekke, O. , and Bakken, L. E. , 2007, “ Axial Compressor Deterioration Caused by Saltwater Ingestion,” ASME J. Turbomach., 129(1), pp. 119–126. [CrossRef]
Kurz, R. , Musgrove, G. , and Brun, K. , 2017, “ Experimental Evaluation of Compressor Blade Fouling,” ASME J. Eng. Gas Turbines Power, 139(3), p. 032601. [CrossRef]
Vigueras Zuniga, M. O. , 2007, “ Analysis of Gas Turbine Compressor Fouling and Washing on Line,” Ph.D. thesis, Cranfield University, Cranfield, UK. http://hdl.handle.net/1826/2448
Carpenter, L. K. , Crouse , F. W., Jr. , and Halow, J. S. , 1985, “ Coal-Fueled Turbines: Deposition Research,” ASME Paper No. 85-GT-213.


Grahic Jump Location
Fig. 1

Number of occurrences for: (a) particle diameter, (b) velocity, and (c) temperature

Grahic Jump Location
Fig. 2

Viscosity values as a function of the temperature calculated according to the NPL model [77]

Grahic Jump Location
Fig. 3

Critical viscosity method (rebound and sticking regions are divided by the dashed line) calculated according to the NPL model [77]

Grahic Jump Location
Fig. 4

Critical viscosity method for silty particles (six tests with ARD) and coal particles (JPBS A, three tests with JPBS B, JBPP, five tests with Coal (bit) and three tests with Pittsburg) calculated according to the NPL model [77]

Grahic Jump Location
Fig. 5

Classification of volcanic tests according to the total alkali-silica diagram. The black star marker used for Laki tests (Laki 2, 3, 4, and 5) summarizes four different tests.

Grahic Jump Location
Fig. 6

Critical viscosity method for volcanic particles according to the GRD model [80]

Grahic Jump Location
Fig. 7

Comparison of the critical viscosity ratio (μ/μc) calculated according the NPL [77] and GRD [80] viscosity methods where straight dashed line allows the data comparison

Grahic Jump Location
Fig. 8

Critical velocity method for JBPS B 2 as a function of the particle diameter. Lower particle velocity v than critical velocity determines sticky condition.

Grahic Jump Location
Fig. 9

Ekin-Θ plane: deposition tests

Grahic Jump Location
Fig. 10

Ekin-Θ plane including erosion and splashing tests. Particle deposition data are reported with gray dots.

Grahic Jump Location
Fig. 11

Particle impact behavior map



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In