Research Papers

Experimental Investigation of Heat Transfer in Cavities of Steam Turbine Casings Under Generic Test Rig Conditions

[+] Author and Article Information
David Spura

Chair of Thermal Power Machinery and Plants,
Institute of Power Engineering,
Technische Universität Dresden,
Dresden 01062, Germany
e-mail: david.spura@tu-dresden.de

Gunter Eschmann, Wieland Uffrecht

Chair of Magnetofluiddynamics,
Measuring and Automation Technology,
Institute of Fluid Mechanics,
Technische Universität Dresden,
Dresden 01062, Germany

Uwe Gampe

Chair of Thermal Power Machinery and Plants,
Institute of Power Engineering,
Technische Universität Dresden,
Dresden 01062, Germany

1Corresponding author.

Manuscript received August 15, 2018; final manuscript received August 21, 2018; published online April 8, 2019. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(5), 051021 (Apr 08, 2019) (11 pages) Paper No: GTP-18-1569; doi: 10.1115/1.4041452 History: Received August 15, 2018; Revised August 21, 2018

This paper presents the first experimental results of the systematic investigation of forced convection heat transfer in scaled generic models of steam turbine casing side spaces with varied geometric dimensions under fully turbulent air flow. Data were obtained by two redundant low-heat measuring methods. The results from the steady-state inverse method are in good agreement with the data from the local overtemperature method, which was applied via a novel miniaturized heat transfer coefficient (HTC) sensor concept. All experiments were conducted at the new side space test rig “SiSTeR” at TU Dresden. The dependencies of the HTC distributions on the axial widths of the cavity and its inlet and on the eccentricity between them were investigated for Reynolds numbers from Re=40,000 to 115,000 in the annular main flow passage. The measured HTC distributions showed a maximum at the stagnation point where the induced jet impinges on the wall surface, and decreasing values toward the cavity corners. Local values scaled roughly with the main flow Reynolds number. The HTC distributions thereby differed considerably depending on the dimensions and the form of the cavity, ranging from symmetric T-shape to asymmetric L-shape, with upstream or downstream shifted sidewalls.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Маляренко, В. А. , Голощапов, В. Н. , Барсуков, В. А. , КоTульская, О. В. , and Черноусенко, О. Ю. , 1991, “ Теnлообмен u газоuнамuка в камеpаx оmбopа napoвыx mypбuн ,” Наукова думка, Киев.
Plotkin, E. R. , Leizerovich, A. S. , and Muratova, I. V. , 1971, “Investigation of Heat-Transfer Conditions in the K-200-130 Steam Turbine,” Therm. Eng., 18(5), pp. 41–45.
Leizerovich, A. S. , and Plotkin, E. R. , 1991, “Correlating the Results of Experimental Investigations Into Heat Transfer Coefficients of Steam Turbine Stator Elements,” Therm. Eng., 38(10), pp. 550–553.
Маховко, Ю. Е. , and Верников , Е. М. , 1973, “Определение локальных коэффициентов теплоотдачи в корпусах паровых турбин,” Энергомашuностроение , 19(8), pp. 10–12.
Aleshin, A. I. , Leizerovich, A. S. , and Plotkin, E. R. , 1976, “Conditions of Heat Transfer and Gasdynamics in Steam Turbine Extraction Chambers,” Therm. Eng., 23(8), pp. 37–42.
Matsevityi, Y. M. , Barsukov, V. A. , Goloshchapov, V. N. , and Malyarenko, V. A. , 1979, “Estimation of the Heat-Transfer Conditions in the Neighborhood of the Stagnation Point During Impingement of a Jet on an Obstacle,” J. Eng. Phys., 37(2), pp. 899–903. [CrossRef]
Голощапов, В. Н. , Котульская, О. В. , and Пози Γ ун, М. П. , 2000, “Теплообмен на поверхности камеры реΓенеративноΓо отбора паровой турбины,” Энергетuка u электpuфuкаu,uя, 6, pp. 7–11.
Барсуков, В. А. , 1980, “Исследование Γ азодинамики и теплообмена в камерах отбора паровых турбин,” дис. канд. техн. наук., Харьков.
Маляренко, В. А. , 1982, “Исследование теплообмена в камерах отбора турбин типа К-300-240 ПОТ ХТЗ в пусковых режимах,” Энергетuческое машuиностроенuе , 34, pp. 68–77.
Маляренко, В. А. , and Барсуков , В. А. , 1980, “Обобщенная методика расчета коэффициентов теплоотдачи в камерах ре Γ енеративно Γ о отбора паровых турбин,” Энергеmuческое машuносmроенuе , 30, pp. 74–83.
Чэнь, Д. , 2000, “Моделирование течени й в трактах отбора для определения их сопротивления и влияния на структуру потока в околоотборных ступенях паровых турбин,” дис. канд. техн. наук. Государст венны й Tехнически й Университет, Санкт-Петербур Γ .
Leizerovich, A. S. , 2008, Steam Turbines for Modern Fossil-Fuel Power Plants, Fairmont Press, Lilburn/Georgia, Boca Raton, FL.
Siemens AG, 2004, “ 3D-Zeichnung Einer Industriedampfturbine Des Typs SST-600: EOG20041001-02,” Siemens AG, München/Berlin, Germany, accessed Sept. 20, 2018, www.siemens.com/press/photo/EFPG20041001-01d
Spura, D. , Lueckert, J. , Schoene, S. , and Gampe, U. , 2015, “Concept Development for the Experimental Investigation of Forced Convection Heat Transfer in Circumferential Cavities With Variable Geometry,” Int. J. Therm. Sci., 96, pp. 277–289. [CrossRef]
Spura, D. , 2013, “Voruntersuchungen zur experimentellen Modellierung des Wärmeübergangs in Seitenräumen von Dampfturbinengehäusen,” Diploma thesis, Technische Universität Dresden, Dresden, Germany.
Heße, C. , 2011, “Entwicklung eines wissensbasierten modularen Verfahrens zur Beurteilung der thermischen Verkrümmung von Industriedampfturbinengehäusen,” Doctoral dissertation, Technische Universität Dresden, Dresden, Germany.
Uffrecht, W. , Günther, A. , and Caspary, V. , 2012, “Kleine Thermistoren zur Messung von Wärmeübergangskoeffizienten,” Tech. Mess., 79(12), pp. 549–558. [CrossRef]
Uffrecht, W. , Günther, A. , and Caspary, V. , 2012, “ Electro-Thermal Measurement of Heat Transfer Coefficients,” ASME Paper No. GT2012-68144.
Uffrecht, W. , Heinschke, B. , Günther, A. , Caspary, V. , and Odenbach, S. , 2015, “Measurement of Heat Transfer Coefficients at Up to 25,500 g—A Sensor Test at a Rotating Free Disk With Complex Telemetric Instrumentation,” Int. J. Therm. Sci., 96, pp. 331–344. [CrossRef]
Heinschke, B. , Uffrecht, W. , Odenbach, S. , and Caspary, V. , 2018, “Telemetric Heat Transfer Coefficient Measurements in an Open Rotor Stator System Air Gap at Up to 8500 Rpm,” ASME Paper No. GT2018-75060.
Heinschke, B. , Uffrecht, W. , Günther, A. , Odenbach, S. , and Caspary, V. , 2014, “Telemetric Measurement of Heat Transfer Coefficients in Gaseous Flow: First Test of a Recent Sensor Concept in a Rotating Application,” ASME Paper No. GT2014-26239.
Eschmann, G. , Kuntze, A. , Uffrecht, W. , Kaiser, E. , and Odenbach, S. , 2015, “Experimental and Numerical Investigation of Heat Transfer Coefficients in Gaseous Impinging Jets: First Test of a Recent Sensor Concept for Steady and Unsteady Flow,” Int. J. Therm. Sci., 96, pp. 290–304. [CrossRef]
Gnielinski, V., “Heat Transfer in Concentric Annular and Parallel Plate Ducts,” VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, ed., Springer, Berlin, pp. 701–708.
Spura, D. , Eschmann, G. , Uffrecht, W. , Gampe, U. , and Odenbach, S. , 2016, “COOREFLEX 4.3.6: Thermisches und mechanisches Verhalten von Turbinengehäusen: Statusbericht,” Tagungsband zum 15. Statusseminar der AG Turbo, Bergisch-Gladbach, Germany, Dec. 12–13 .
Frąckowiak, A. , Spura, D. , Gampe, U. , and Ciałkowski, M. , 2018, “Determination of Heat Transfer Coefficient in t-Shaped Cavity by Means of Solving the Inverse Heat Conduction Problem,” 11th International Conference on Computational Heat, Mass and Momentum Transfer, Cracow, Poland, May 21–24.
Gnielinski, V., “Heat Transfer in Pipe Flow,” VDI Heat Atlas, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, ed., Springer, Berlin, pp. 693–699.


Grahic Jump Location
Fig. 1

Side spaces between guide vane carriers and outer casing of an industrial steam turbine [13]

Grahic Jump Location
Fig. 2

Piping scheme of the pressurized air facility: 1—screw compressors; 2—pressure vessel; 3—pressure reducing valve; 4—three-way bypass valve; 5—orifice plate; 6—test rig; 7—exhaust control valve

Grahic Jump Location
Fig. 3

Test rig concept: 1—inflow; 2—main flow passage (annulus); 3—variable guide vane (optional); 4—calming section; 5—inlet side wall (right side axially shiftable); 6—cavity side wall (axially shiftable); 7—cavity outer wall with HTC instrumentation (axially shiftable, revolvable); 8—cavity; 9—cavity inlet; 10—outer pipe/outliner; 11—displacement body/inliner; 12—outflow

Grahic Jump Location
Fig. 4

Dimensions of the cavity and the annular main flow passage

Grahic Jump Location
Fig. 5

Cavity outer wall consisting of eight identical ring-shaped HTC measuring modules

Grahic Jump Location
Fig. 6

Side space module with side wall adjustment mechanism and insulated outer wall

Grahic Jump Location
Fig. 7

Mesh and boundary conditions of the 2D FE model

Grahic Jump Location
Fig. 8

Convergence of the design optimization for inverse determination of HTC with the FE model: (a) objective function dTopt; (b) differences between simulated and measured temperatures ΔTk; and (c) iterated values of HTC interval averages α¯j

Grahic Jump Location
Fig. 9

Resulting HTC distribution at the outer cavity wall for the converged FE model. Vertical bars denote the standard deviation from the probabilistic analysis. Horizontal bars symbolize the “wetted” ring surfaces being in contact with the fluid in the cavity.

Grahic Jump Location
Fig. 10

Temperature field of the side space structures for the converged FE model

Grahic Jump Location
Fig. 11

Resolution of the data acquisition system as function of HTC and fluid temperature

Grahic Jump Location
Fig. 12

Comparison between local HTC distributions from both measuring methods: (a) s=46.3 mm, b=146.3 mm, e=0; (b) s=20 mm, b=120 mm, e=0

Grahic Jump Location
Fig. 13

Influence of inlet width on HTC distribution: (a) s=46.3 mm, (b) s=40 mm, (c) s=30 mm, (d) s=20 mm, (e) s=10 mm; b=s+100 mm, e=0

Grahic Jump Location
Fig. 14

Influence of cavity width on HTC distribution: (a) b=146.3 mm, (b) b=121.3 mm, (c) b=96.3 mm, (d) b=71.3 mm, (e) b=46.3 mm; s=46.3 mm, e=0

Grahic Jump Location
Fig. 15

Influence of eccentricity on HTC distribution: (a) e=25mm, (b) e=12.5mm, (c) e=0mm, (d) e=−12.5mm, (e) e=−25mm; s=46.3mm, b=96.3mm



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In