0
research-article

EFFECT OF CIRCUMFERENTIAL LOCATION OF RADIAL INJECTION ON ROTORDYNAMIC PERFORMANCE OF HYBRID AIR FOIL BEARINGS

[+] Author and Article Information
Behzad Zamanian Yazdi

Energy Recovery Inc., San Leandro, CA, 94577
bzamanian@energyrecovery.com

Daejong Kim

The University of Texas at Arlington, Arlington, TX 76019
daejongkim@uta.edu

1Corresponding author.

ASME doi:10.1115/1.4041646 History: Received August 01, 2018; Revised September 03, 2018

Abstract

Air foil bearings (AFBs) are introduced as promising bearings for oil-free turbomachinery applications. AFBs provide reliable operation at high speed and high temperature with negligible power loss. Hybrid Air Foil Bearing (HAFB) technology utilizes the radial injection of externally pressurized air into the traditional hydrodynamic AFB's film thickness through orifices attached to the top foil. Previous studies have reported enhancement in the rotordynamic stability of HAFBs compared to traditional hydrodynamic AFBs. HAFBs have several orifices distributed in the circumferential direction. In this study, the effect of the circumferential location of radial injection on the rotordynamic performance of the rotor-HAFB is studied. Analytical and experimental evaluations of the rotordynamic performance of a rotor supported by two single-pad HAFBs are presented. Parametric studies are conducted using three sets of single-pad HAFBs. The circumferential locations of orifices are different for each set. The presented simulation analyses consist of time-domain orbit simulation and frequency-domain modal analysis. Imbalance responses of rotor-HAFB were measured with various orifice locations and the results agree well with predictions. Comparison of the rotordynamic performance of HAFBs with different orifice configurations demonstrate substantial improvement in rotordynamic stability as well as enhancement in the stiffness and damping coefficients of HAFBs by choosing the best circumferential location for radial injection to control rotor eccentricity and attitude angle.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In