Research Papers

Large Eddy Simulation and Experimental Analysis of Combustion Dynamics in a Gas Turbine Burner

[+] Author and Article Information
Daniel Moëll

Siemens Industrial Turbomachinery AB,
Finspong SE-612 83, Sweden
e-mail: daniel.moell@siemens.com

Andreas Lantz

Division of Combustion Physics Lund University,
P.O. Box 118,
Lund SE-221 00, Sweden
e-mail: andreas.lantz@siemens.com

Karl Bengtson

Siemens Industrial Turbomachinery AB,
Finspong SE-612 83, Sweden
e-mail: karl.bengtson@siemens.com

Daniel Lörstad

Siemens Industrial Turbomachinery AB,
Finspong SE-612 83, Sweden
e-mail: daniel.lorstad@siemens.com

Annika Lindholm

Siemens Industrial Turbomachinery AB,
Finspong SE-612 83, Sweden
e-mail: annika.lindholm@siemens.com

Xue-Song Bai

Department of Energy Sciences Lund University,
P.O. Box 118,
Lund SE-221 00, Sweden
e-mail: xue-song.bai@energy.lth.se

1Corresponding author.

2Present address: Siemens Industrial Turbomachinery AB, Finspong, SE-612 83, Sweden.

Manuscript received July 5, 2018; final manuscript received November 28, 2018; published online February 11, 2019. Editor: Jerzy T. Sawicki.

J. Eng. Gas Turbines Power 141(7), 071015 (Feb 11, 2019) (10 pages) Paper No: GTP-18-1448; doi: 10.1115/1.4042473 History: Received July 05, 2018; Revised November 28, 2018

Large eddy simulations (LES) and experiments (planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) and pressure transducer) have been carried out on a gas turbine burner fitted to an atmospheric combustion rig. This burner, from the Siemens SGT-800 gas turbine, is a low NOx, partially premixed burner, where preheat air temperature, flame temperature, and pressure drop across the burner are kept similar to engine full load conditions. The large eddy simulations are based on a flamelet-generated manifold (FGM) approach for representing the chemistry and the Smagorinsky model for subgrid turbulence. The experimental data and simulation data are in good agreement, both in terms of time averaged and time-resolved quantities. From the experiments and LES, three bands of frequencies of pressure fluctuations with high power spectral density are found in the combustion chamber. The first two bands are found to be axial pressure modes, triggered by coherent flow motions from the burner, such as the flame stabilization location and the precessing vortex core (PVC). The third band is found to be a cross flow directional mode interacting with two of the four combustion chamber walls in the square section of the combustion chamber, triggered from general flow motions. This study shows that LES of real gas turbine components is feasible and that the results give important insight into the flow, flame, and acoustic interactions in a specific combustion system.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Döbbeling, K. , Helat, J. , and Koch, H. , 2007, “ 25 Years of BBC/ABB/Alstom Lean Premixed Combustion Technologies,” ASME J. Eng. Gas Turbines Power, 129(1), pp. 2–12.
Huang, Y. , and Yang, V. , 2009, “ Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion,” Prog. Energy Combust. Sci., 35(4), pp. 293–364.
Poinsot, T. , 2017, “ Prediction and Control of Combustion Instabilities in Real Engines,” Proc. Combust. Inst., 36(1), pp. 1–28.
Franzelli, B. , Riber, E. , Gicquel, L. Y. M. , and Poinsot, T. , 2012, “ Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame,” Combust. Flame, 159(2), pp. 621–637.
O'Connor, J. , Acharya, V. , and Lieuwen, T. , 2015, “ Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes,” Prog. Energy Combust. Sci., 49, pp. 1–39.
Bauerheim, M. , Staffelbach, G. , Worth, N. A. , Dawson, J. R. , Gicquel, L. Y. M. , and Poinsot, T. , 2015, “ Sensitivity of LES-Based Harmonic Flame Response Model for Turbulent Swirled Flames and Impact on the Stability of Azimuthal Modes,” Proc. Combust. Inst., 35(3), pp. 3355–3363.
Worth, N. A. , and Dawson, J. R. , 2017, “ Effects of Equivalence Ratio on the Modal Dynamics of Azimuthal Combustion Instabilities,” Proc. Combust. Inst., 36(3), pp. 3743–3751.
Wolf, P. , Staffelbach, G. , Gicquel, L. Y. M. , Müller, J. D. , and Poinsot, T. , 2012, “ Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers,” Combust. Flame, 159(11), pp. 3398–3413.
Gicquel, L. Y. M. , Staffelbach, G. , and Poinsot, T. , 2012, “ Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers,” Prog. Energy Combust. Sci., 38(6), pp. 782–817.
Lantz, A. , Collin, R. , Aldén, M. , Lindholm, A. , Larfeldt, J. , and Lörstad, D. , 2015, “ Investigation of Hydrogen Enriched Natural Gas Flames in a SGT700/800 Burner Using OH PLIF and Chemiluminescence Imaging,” ASME J. Eng. Gas Turbines Power, 137(3), p. 031505.
Selle, L. , Benoit, L. , Nicoud, T. P. F. , and Krebs, W. , 2006, “ Joint Use of Compressible Large-Eddy Simulation and Helmholtz Solvers for the Analysis of Rotating Modes in an Industrial Swirled Burner,” Combust. Flame, 145(1–2), pp. 194–205.
Staffelbach, G. , Gicquel, L. Y. M. , Boudier, G. , and Poinsot, T. , 2009, “ Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors,” Proc. Combust. Inst., 32(2), pp. 2909–2916.
Hermeth, S. , Staffelbach, G. , Gicquel, L. Y. M. , and Poinsot, T. , 2013, “ LES Evaluation of the Effects of Equivalence Ratio Fluctuations on the Dynamic Flame Response in a Real Gas Turbine Combustion Chamber,” Proc. Combust. Inst., 34(2), pp. 3165–3173.
See, Y. C. , and Ihme, M. , 2015, “ Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor,” Proc. Combust. Inst., 35(2), pp. 1225–1234.
Bulat, G. , Jones, W. P. , and Marquis, A. J. , 2013, “ Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method,” Proc. Combust. Inst., 34(2), pp. 3155–3164.
Moëll, D. , Lörstad, D. , and Bai, X.-S. , 2017, “ Numerical and Experimental Investigations of the Siemens SGT-800 Burner Fitted to a Water Rig,” ASME Paper No. GT2017-64129.
Bray, K. N. C. , 1979, “ The Interaction Between Turbulence and Combustion,” Proc. Combust. Inst., 17(1), pp. 223–233.
Driscoll, J. F. , 2008, “ Turbulent Premixed Combustion: Flamelet Structure and Its Effect on Turbulent Burning Velocities,” Prog. Energy Combust. Sci., 34(1), pp. 91–134.
Zhou, B. , Brackmann, C. , Li, Z. , Aldén, M. , and Bai, X.-S. , 2015, “ Simultaneous Multi-Species and Temperature Visualization of Premixed Flames in the Distributed Reaction Zone Regime,” Proc. Combust. Inst., 35(2), pp. 1409–1416.
Zhou, B. , Brackmann, C. , Wang, Z. , Li, Z. , Richter, M. , Aldén, M. , and Bai, X.-S. , 2017, “ Thin Reaction Zone and Distributed Reaction Zone Regimes in Turbulent Premixed Methane/Air Flames: Scalar Distributions and Correlations,” Combust. Flame, 175, pp. 220–236.
Skiba, A. W. , Wabel, T. M. , Carter, C. D. , Hammack, S. D. , Temme, J. E. , Lee, T. , and Driscoll, J. F. , 2017, “ Reaction Layer Visualization: A Comparison of Two PLIF Techniques and Advantages of kHz-Imaging,” Proc. Combust. Inst., 36(3), pp. 4593–4601.
Aspden, A. J. , Day, M. S. , and Bell, J. B. , 2011, “ Turbulence-Flame Interactions in Lean Premixed Hydrogen: Transition to the Distributed Burning Regime,” J. Fluid Mech., 680, pp. 287–320.
Carlsson, H. , 2014, “ Detailed Numerical Simulations of Turbulent Premixed Flames at Moderate and High Karlovitz Numbers,” Ph.D. thesis, Media-Tryck, Lund, Sweden. http://portal.research.lu.se/ws/files/6137003/4732489.pdf
Wang, H. , Hawkes, E. R. , Chen, J. H. , Zhou, B. , Li, Z. , and Aldén, M. , 2017, “ Direct Numerical Simulation of a High Karlovitz Number Laboratory Premixed Jet Flame—An Analysis of Flame Stretch and Flame Thickening,” J. Fluid Mech., 815, pp. 511–536.
Nilsson, T. , Carlsson, H. , Yu, R. , and Bai, X. S. , 2018, “ Structures of Turbulent Premixed Flames in the High Karlovitz Number Regime—DNS Analysis,” Fuel, 216, pp. 627–638.
Moëll, D. , Lörstad, D. , and Bai, X.-S. , 2016, “ Numerical Investigation of Methane/Hydrogen/Air Partially Premixed Flames in the SGT-800 Burner Fitted to a Combustion Rig,” Flow, Turbul. Combust., 96(4), pp. 987–1003.
Siemens AG, 2019, “Siemens SGT-800 Information in Brochure,” Siemens, Munich, Germany, accessed Jan. 17, 2019, http://www.energy.siemens.com/hq/en/fossil-power-generation/gas-turbines/sgt-800.htm
Smagorinsky, J. , 1963, “ General Circulation Experiments With the Primitive Equations—I: The Basic Experiment,” Mon. Weather Rev., 91(3), pp. 99–164.
van Driest, E. R. , 1956, “ On Turbulent Flow Near a Wall,” J. Aeronaut. Sci., 23, pp. 1007–1011.
van Oijen, J. A. , and de Goey, L. P. H. , 2000, “ Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds,” Combust. Sci. Technol., 161(1), pp. 11–137.
van Oijen, J. A. , Donini, A. , Bastiaans, R. J. M. , ten Boonkkamp, J. H. M. , and de Goey, L. P. H. , 2016, “ State-of-the-Art Inpremixed Combustion Modeling Using Flamelet Generated Manifolds,” Prog. Energy Combust. Sci., 57, pp. 30–74.
Fiorina, B. , Vicquelin, R. , Auzillon, P. , Darabiha, N. , Giquel, O. , and Veynante, D. , 2010, “ A Filtered Tabulated Chemistry Model for LES of Premixed Combustion,” Combust. Flame, 157(3), pp. 465–475.
Ihme, M. , Shunn, L. , and Zhang, J. , 2012, “ Regularization of Reaction Progress Variable for Application to Flamelet-Based Combustion Models,” J. Comput. Phys., 231(23), pp. 7715–7721.
Goldin, G. , and Zhang, Y. , 2017, “ A Generalized FGM Progress Variable Weight Optimization Using Heeds,” ASME Paper No. GT2017-64446.
Donini, A. , Bastiaans, R. J. M. , van Oijen, J. A. , and de Goey, L. P. H. , 2017, “ DA 5-D Implementation of FGM for the Large Eddy Simulation of a Stratified Swirled Flame With Heat Loss in a Gas Turbine Combustor,” Flow, Turbul. Combust., 98(3), pp. 887–922.
Ihme, M. , Cha, C. M. , and Pitsch, H. , 2005, “ Prediction of Local Extinction and Re-Ignition Effects in Non-Premixed Turbulent Combustion Using a Flamelet/Progress Variable Approach,” Proc. Combust. Inst., 30(1), pp. 793–800.
Janicka, J. , and Kollmann, W. , 1978, “ A Two-Variables Formalism for the Treatment of Chemical Reactions in Turbulent H2-Air Diffusion Flames,” Proc. Combust. Inst., 17(1), pp. 421–430.
Pierce, C. D. , and Moin, P. , 2004, “ Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion,” J. Fluid Mech., 504, pp. 73–97.
Poinsot, T. , and Vaynante, D. , 2005, Theoretical and Numerical Combustion, 2nd ed., R. T. Edwards Incorporated, Murarrie, Australia.
Lucca-Negro, O. , and O'Doherty, T. , 2001, “ Vortex Breakdown: A Review,” Prog. Energy Combust. Sci., 4, pp. 431–481.
Wu, Y. , Carlsson, C. , Szasz, R. , Peng, L. , Fuchs, L. , and Bai, X. S. , 2016, “ Effect of Geometrical Contraction on Vortex Breakdown of Swirling Turbulent Flow in a Model Combustor,” Fuel, 170, pp. 210–225.
Syred, N. , 2006, “ A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems,” Prog. Energy Combust. Sci., 32(2), pp. 93–161.
Pope, S. B. , 2004, “ Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows,” New J. Phys., 6(1), pp. 1–24.
Sheen, H. I. , Chen, W. J. , Jeng, S. Y. , and Huang, T. L. , 1996, “ Correlation of Swirl Number for a Radial-Type Swirl Generator,” Exp. Therm. Fluid Sci., 12(4), pp. 444–451.
Polifke, W. , Fischer, A. , and Sattelmayer, T. , 2003, “ Instability of a Premixed Burner With Nonmonotonic Pressure Drop Characteristic,” ASME J. Eng. Gas Turbines Power, 125 (1), pp. 20–27.
Hirsch, C. , Fanaca, D. , Alemela, R. , Polifke, W. , and Sattelmayer, T. , 2005, “ Influence of the Swirler Design on Flame Transfer Function of Premixed Flames,” ASME Paper No. GT2005-68195.
Moëll, D. , Lörstad, D. , and Bai, X.-S. , 2018, “ LES of Hydrogen Enriched Methane/Air Combustion in the SGT-800 Burner at Real Engine Conditions,” ASME Paper No. GT2018-76434.


Grahic Jump Location
Fig. 1

Schematics of the SGT-800 burner with laser sheet (a) and combustion rig assembly (b)

Grahic Jump Location
Fig. 2

Experimental setup

Grahic Jump Location
Fig. 3

A snapshot of instantaneous pressure, temperature and velocity field from LES

Grahic Jump Location
Fig. 4

Planar laser-induced fluorescence of the hydroxyl radical data with instantaneous snapshot, instantaneous gradient, and PDF of gradient (top), LES data for grid 1 (middle) and LES data for grid 2 (bottom): (a) experiment, (b) grid 1, δ-PDF, (c) grid 1, β-PDF, (d) grid 2, δ-PDF, and (e) grid 2, β-PDF

Grahic Jump Location
Fig. 5

Mean (solid lines) axial velocity, mean temperature, and rms (dashed lines) of temperature along the center line predicted in LES using different PDF shapes and M criterion for grids 1 and 2: (a) mean axial velocity, (b) mean temperature and rms of temperature fluctuation, grid 2, (c) M criteria, grid 1, and (d) M criteria, grid 2

Grahic Jump Location
Fig. 6

Comparison of experimental and LES pressure data sampled at the location of the pressure transducer

Grahic Jump Location
Fig. 7

Acoustic eigenmodes, visualized by the magnitude of the pressure fluctuation, for St = 0.18 (bottom), St = 0.69 (middle), and St = 1.56 (top) from Helmholtz solver

Grahic Jump Location
Fig. 8

Pressure (top), axial velocity (middle), and mixture fraction (bottom) on the burner center line over the simulation time, τ, combined with flame position represented by c̃=0.5 (white line)

Grahic Jump Location
Fig. 9

Temporal evolution of pressure, swirl number (left axis), and the axial location of FSP and c̃=0.5 (right axis)

Grahic Jump Location
Fig. 10

Pressure along two perpendicular radial lines, located at x/D =0.5

Grahic Jump Location
Fig. 11

Fluctuation of pressure normalized by a reference pressure on combustion chamber walls



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In