TECHNICAL PAPERS: Gas Turbines: CFD Modeling and Simulation

J. Eng. Gas Turbines Power. 2007;129(4):893-900. doi:10.1115/1.2719260.

Buoyancy-induced flow can occur in the cavity between the co-rotating compressor disks in gas-turbine engines, where the Rayleigh numbers can be in excess of 1012. In most cases the cavity is open at the center, and an axial throughflow of cooling air can interact with the buoyancy-induced flow between the disks. Such flows can be modeled, computationally and experimentally, by a simple rotating cavity with an axial flow of air. This paper describes work conducted as part of ICAS-GT, a major European research project. Experimental measurements of velocity, temperature, and heat transfer were obtained on a purpose-built experimental rig, and these results have been reported in an earlier paper. In addition, 3D unsteady CFD computations were carried out using a commercial code (Fluent) and a RNG kε turbulence model. The computed velocity vectors and contours of temperature reveal a flow structure in which, as seen by previous experimenters, “radial arms” transport cold air from the center to the periphery of the cavity, and regions of cyclonic and anticyclonic circulation are formed on either side of each arm. The computed radial distribution of the tangential velocity agrees reasonably well with the measurements in two of the three cases considered here. In the third case, the computations significantly overpredict the measurements; the reason for this is not understood. The computed and measured values of Nu for the heated disk show qualitatively similar radial distributions, with high values near the center and the periphery. In two of the cases, the quantitative agreement is reasonably good; in the third case, the computations significantly underpredict the measured values.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Coal, Biomass, and Alternative Fuels

J. Eng. Gas Turbines Power. 2007;129(4):901-907. doi:10.1115/1.2720521.

A microscale electrically heated rotary kiln for slow pyrolysis of biomass and waste was designed and built at the University of Perugia. The reactor is connected to a wet scrubbing section, for tar removal, and to a monitored combustion chamber to evaluate the lower heating value of the syngas. The system allows the evaluation of gas, tar, and char yields for different pyrolysis temperatures and residence times. The feeding screw conveyor and the kiln are rigidly connected; therefore, a modification of the flow rate implies a modification of the inside solid motion and of residence time. The paper provides the theoretical and experimental calculation of the relationships between residence time and flow rate used to determine the working envelope of the reactor as a function of the feedstock bulk density and moisture content, given the actual heat rate of the electric heaters. The methodology is extendable to any rotary kiln reactor with a rigidly connected feeding screw conveyor, given its geometric and energetic specifications. Part II of the paper will extend the energy balance, also introducing the yields of pyrolysis products.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):908-913. doi:10.1115/1.2720539.

A microscale electrically heated rotary kiln for slow pyrolysis of biomass and waste was designed and built at the University of Perugia. The reactor is connected to a wet scrubbing section, for tar removal, and to a monitored combustion chamber to evaluate the lower heating value of the syngas. The system allows the evaluation of gas, tar, and char yields for different pyrolysis temperature and residence time. The feeding screw conveyor and the kiln are rigidly connected; therefore a modification of the flow rate implies a modification of the inside solid motion and of residence time. Part I of the paper describes the theoretical and experimental evaluation of the working envelope of the reactor, that is, rotational speed as a function of feedstock density and humidity content, to obtain pyrolysis conditions inside the kiln. This paper describes the development and resolution of an energy balance of the reactor under pyrolysis conditions. Once the rotational speed n is fixed, the aim of the balance is to obtain the yield of wood biomass pyrolysis products such as syngas, tar, and char. Results can be used to choose the correct rotational speed of kiln and feeding screw before doing the real pyrolysis test.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Combustion and Fuels

J. Eng. Gas Turbines Power. 2007;129(4):914-919. doi:10.1115/1.2719259.

A counter-flow annular heat recirculating burner was designed for lean prevaporized, premixed combustion. Prior to entering the combustor, the reactants are passed through a porous media-filled preheating annulus surrounding the combustor. Kerosene is dripped by gravity onto the porous media and vaporized by the heat conducted through the combustor wall. Experiments were conducted to evaluate heat transfer and combustion performance at various equivalence ratios, heat release rates, and inlet air temperatures. Results show low CO emissions over a range of equivalence ratios. NOx emissions were high at high heat release rates, indicating inadequate prevaporization and premixing of fuel with air. Heat recirculation and heat loss characteristics are presented at various operating conditions.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):920-928. doi:10.1115/1.2747253.

This paper describes numerical implementation and validation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extends two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (the “blob” model) (1987, Atomization Spray Technol., 3, pp. 309–337) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup of O’Rourke and Amsden (1987, SAE Technical Paper No. 872089) to include liquid turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and flow conditions at the liquid nozzle exit. Transition to the secondary breakup was modeled based on energy balance, and an additional turbulence force acted on parent drops was modeled and integrated into the TAB governing equation. Several assessment studies are presented, and the results indicate that the existing KH and TAB models tend to underpredict the product drop size and spray angle, whereas the current model provides superior results when compared to the measured data.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):929-936. doi:10.1115/1.2747259.

In earlier experimental studies of the authors a previously unknown mechanism leading to flame flashback—combustion induced vortex breakdown (CIVB)—was discovered in premixed swirl burners. It exhibits the sudden formation of a recirculation bubble in vortical flows, which propagates upstream into the mixing zone after the equivalence ratio has exceeded a critical value. This bubble then stabilizes the chemical reaction and causes overheat with subsequent damage to the combustion system. Although it was shown earlier that the sudden change of the macroscopic character of the vortex flow leading to flashback can be qualitatively computed with three-dimensional as well as axisymmetric two-dimensional URANS-codes, the proper prediction of the flashback limits could not be achieved with this approach. For the first time, the paper shows quantitative predictions using a modified code with a combustion model, which covers the interaction of chemistry with vortex dynamics properly. Since the root cause for the macroscopic breakdown of the flow could not be explained on the basis of experiments or CFD results in the past, the vorticity transport equation is employed in the paper for the analysis of the source terms of the azimuthal component using the data delivered by the URANS-model. The analysis reveals that CIVB is initiated by the baroclinic torque in the flame and it is shown that CIVB is essentially a two-dimensional effect. As the most critical zone, the upstream part of the bubble was identified. The location and distribution of the heat release in this zone governs whether or not a flow field is prone to CIVB.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):937-944. doi:10.1115/1.2720543.

Shock-tube experiments and chemical kinetics modeling were performed to further understand the ignition and oxidation kinetics of lean methane-based fuel blends at gas turbine pressures. Such data are required because the likelihood of gas turbine engines operating on CH4-based fuel blends with significant (>10%) amounts of hydrogen, ethane, and other hydrocarbons is very high. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4, CH4H2, CH4C2H6, and CH4C3H8 in ratios ranging from 90/10% to 60/40%. Lean fuel/air equivalence ratios (ϕ=0.5) were utilized, and the test pressures ranged from 0.54 to 30.0atm. The test temperatures were from 1090K to 2001K. Significant reductions in ignition delay time were seen with the fuel blends relative to the CH4-only mixtures at all conditions. However, the temperature dependence (i.e., activation energy) of the ignition times was little affected by the additives for the range of mixtures and temperatures of this study. In general, the activation energy of ignition for all mixtures except the CH4C3H8 one was smaller at temperatures below approximately1300K(27kcalmol) than at temperatures above this value (41kcalmol). A methane/hydrocarbon–oxidation chemical kinetics mechanism developed in a recent study was able to reproduce the high-pressure, fuel-lean data for the fuel/air mixtures. The results herein extend the ignition delay time database for lean methane blends to higher pressures (30atm) and lower temperatures (1100K) than considered previously and represent a major step toward understanding the oxidation chemistry of such mixtures at gas turbine pressures. Extrapolation of the results to gas turbine premixer conditions at temperatures less than 800K should be avoided however because the temperature dependence of the ignition time may change dramatically from that obtained herein.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):945-953. doi:10.1115/1.2747263.

Predictions of breakup length of a liquid sheet emanating from a pressure-swirl (simplex) fuel atomizer have been carried out by computationally modeling the two-phase flow in the atomizer coupled with a nonlinear analysis of instability of the liquid sheet. The volume-of-fluid (VOF) method has been employed to study the flow field inside the pressure-swirl atomizer. A nonlinear instability model has been developed using a perturbation expansion technique with the initial amplitude of the disturbance as the perturbation parameter to determine the sheet instability and breakup. The results for sheet thickness and velocities from the internal flow solutions are used as input in the nonlinear instability model. Computational results for internal flow are validated by comparing film thickness at exit, spray angle, and discharge coefficient with available experimental data. The predictions of breakup length show a good agreement with semiempirical correlations and available experimental measurements. The effect of elevated ambient pressure on the atomizer internal flow field and sheet breakup is investigated. A decrease in air core diameter is obtained at higher ambient pressure due to increased liquid-air momentum transport. Shorter breakup lengths are obtained at elevated air pressure. The coupled internal flow simulation and sheet instability analysis provides a comprehensive approach to modeling sheet breakup from a pressure-swirl atomizer.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2006;129(4):954-961. doi:10.1115/1.2720545.

An understanding of the amplitude dependence of the flame response to acoustic excitation is required in order to predict and/or correlate combustion instability amplitudes. This paper describes an experimental investigation of the nonlinear response of a lean, premixed flame to imposed acoustic oscillations. Detailed measurements of the amplitude dependence of the flame response were obtained at approximately 100 test points, corresponding to different flow rates and forcing frequencies. It is observed that the nonlinear flame response can exhibit a variety of behaviors, both in the shape of the response curve and the forcing amplitude at which nonlinearity is first observed. The phase between the flow oscillation and heat release is also seen to have substantial amplitude dependence. The nonlinear flame dynamics appear to be governed by different mechanisms in different frequency and flowrate regimes. These mechanisms were investigated using phase-locked, two- dimensional OH Planar laser-induced fluorescence imaging. From these images, two mechanisms, vortex rollup and unsteady flame liftoff, are identified as important in the saturation of the flame’s response to large velocity oscillations. Both mechanisms appear to reduce the flame’s area and thus its response at these high levels of driving.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Controls, Diagnostics, and Instrumentation

J. Eng. Gas Turbines Power. 2007;129(4):962-969. doi:10.1115/1.2720517.

In-flight fault accommodation of safety-critical faults requires rapid detection and remediation. Indeed, for a class of safety-critical faults, detection within a millisecond range is imperative to allow accommodation in time to avert undesired engine behavior. We address these issues with an integrated detection and accommodation scheme. This scheme comprises model-based detection, a bank of binary classifiers, and an accommodation module. The latter biases control signals with pre-defined adjustments to regain operability while staying within established safety limits. The adjustments were developed using evolutionary algorithms to identify optimal biases off-line for multiple faults and points within the flight envelope. These biases are interpolated online for the current flight conditions. High-fidelity simulation results are presented showing accommodation applied to a high-pressure compressor fault on a commercial, high-bypass, twin-spool, turbofan engine throughout the flight envelope.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2006;129(4):970-976. doi:10.1115/1.2436548.

A method is proposed to support least square type of methods for deriving health parameters from a small number of independent gas path measurements. The method derives statistical information using sets of solutions derived from a number of data records, to produce sets of candidate solutions with a lesser number of parameters. These sets can then be processed to derive an accurate component fault diagnosis. It could thus be classified as a new type of "concentrator" approach, which is shown to be more effective than previously existing schemes. The method's effectiveness is demonstrated by application to a number of typical jet engine component faults.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):977-985. doi:10.1115/1.2719261.

Gas turbine diagnostic techniques are often based on the recognition methods using the deviations between actual and expected thermodynamic performances. The problem is that the deviations generally depend on current operational conditions. However, our studies show that such a dependency can be low. In this paper, we propose a generalized fault classification that is independent of the operational conditions. To prove this idea, the probabilities of true diagnosis were computed and compared for two cases: the proposed classification and the conventional one based on a fixed operating point. The probabilities were calculated through a stochastic modeling of the diagnostic process. In this process, a thermodynamic model generates deviations that are induced by the faults, and an artificial neural network recognizes these faults. The proposed classification principle has been implemented for both steady state and transient operation of the analyzed gas turbine. The results show that the adoption of the generalized classification hardly affects diagnosis trustworthiness and the classification can be proposed for practical realization.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):986-993. doi:10.1115/1.2747640.

This paper investigates the integration of on-line and off-line diagnostic algorithms for aircraft gas turbine engines. The on-line diagnostic algorithm is designed for in-flight fault detection. It continuously monitors engine outputs for anomalous signatures induced by faults. The off-line diagnostic algorithm is designed to track engine health degradation over the lifetime of an engine. It estimates engine health degradation periodically over the course of the engine’s life. The estimate generated by the off-line algorithm is used to “update” the on-line algorithm. Through this integration, the on-line algorithm becomes aware of engine health degradation, and its effectiveness to detect faults can be maintained while the engine continues to degrade. The benefit of this integration is investigated in a simulation environment using a nonlinear engine model.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Cycle Innovations

J. Eng. Gas Turbines Power. 2006;129(4):994-1003. doi:10.1115/1.2718232.

The authors discuss in this paper the potential of a method for NOx suppression from power plants based on microgas turbines. The method is based on the mild combustion concept but needs to be adapted to the actual operating parameters of the microturbine, thus resulting in an effective employment of the flue gas recirculation for diluting the oxygen in the inlet air. The results are first presented on a thermodynamic basis, and some cases are then analyzed with a computational fluid dynamics simulation. Both approaches suggest good perspectives for the nitric oxide control but also highlight some disadvantages in terms of increase in carbon species.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Industrial and Cogeneration

J. Eng. Gas Turbines Power. 2007;129(4):1004-1011. doi:10.1115/1.2747257.

A conceptual gas turbine based cogeneration cycle with compressor inlet air cooling and evaporative aftercooling of the compressor discharge is proposed to increase the cycle performance significantly and render it practically insensitive to seasonal temperature fluctuations. Combined first and second-law approach is applied for a cogeneration system having intercooled reheat regeneration in a gas turbine as well as inlet air cooling and evaporative aftercooling of the compressor discharge. Computational analysis is performed to investigate the effects of the overall pressure ratio rp, turbine inlet temperature (TIT), and ambient relative humidity φ on the exergy destruction in each component, first-law efficiency, power-to-heat ratio, and second-law efficiency of the cycle. Thermodynamic analysis indicates that exergy destruction in various components of the cogeneration cycle is significantly affected by overall pressure ratio and turbine inlet temperature, and not at all affected by the ambient relative humidity. It also indicates that the maximum exergy is destroyed during the combustion process, which represents over 60% of the total exergy destruction in the overall system. The first-law efficiency, power-to-heat ratio, and second-law efficiency of the cycle significantly vary with the change in the overall pressure ratio and turbine inlet temperature, but the change in relative humidity shows small variations in these parameters. Results clearly show that performance evaluation based on first-law analysis alone is not adequate, and hence, more meaningful evaluation must include second-law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of advanced combined heat and power systems.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Microturbines and Small Turbomachinery

J. Eng. Gas Turbines Power. 2007;129(4):1012-1019. doi:10.1115/1.2747265.

This paper describes the experimental validation of two different transient models of the hybrid fuel cell/gas turbine facility of the U.S. DOE-NETL at Morgantown. The first part of this work is devoted to the description of the facility, designed to experimentally investigate these plants with real components, except the fuel cell. The behavior of the SOFC is obtained with apt volumes (for the stack and the off-gas burner) and using a combustor to generate similar thermal effects. The second part of this paper shows the facility real-time transient model developed at the U.S. DOE-NETL and the detailed transient modeling activity using the TRANSEO program developed at TPG. The results obtained with both models are successfully compared with the experimental data of two different load step decreases. The more detailed model agrees more closely with the experimental data, which, of course, is more time consuming than the real-time model (the detailed model operates with a calculation over calculated time ratio around 6). Finally, the TPG model has been used to discuss the importance of performance map precision for both compressor and turbine. This is an important analysis to better understand the steady-state difference between the two models.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Gas Turbines: Structures and Dynamics

J. Eng. Gas Turbines Power. 2007;129(4):1020-1027. doi:10.1115/1.2720518.

Micro-turbomachinery demands gas bearings to ensure compactness, light weight, and extreme temperature operation. Gas bearings with large stiffness and damping, and preferably of low cost, will enable successful commercial applications. Presently, tests conducted on a small rotor supported on flexure pivot hydrostatic pad gas bearings (FPTPBs) demonstrate stable rotordynamic responses up to 100,000rpm (limit of the drive motor). Test rotor responses show the feed pressure raises the system critical speed (increase in bearing direct stiffness) while the viscous damping ratio decreases. Predictions correlate favorably with experimentally identified (synchronous) direct stiffness bearing force coefficients. Identified experimental gas bearing synchronous damping coefficients are 50% or less of the predicted magnitudes, though remaining relatively constant as the rotor speed increases. Tests without feed pressure show the rotor becomes unstable at 81krpm with a whirl frequency ratio of 20%. FPTPBs are mechanically complex and more expensive than cylindrical plain bearings. However, their enhanced stability characteristics and predictable rotordynamic performance makes them desirable for the envisioned oil-free applications in high speed micro-turbomachinery.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2006;129(4):1028-1034. doi:10.1115/1.2434344.

The paper deals with the static stability of annular gas seals under choked flow conditions. For a centered straight annular seal, choking can occur only in the exit section because the gas is constantly accelerated by friction forces. From the mathematical standpoint, the flow choking corresponds to a singularity that was never dealt with numerically. The present work introduces an original numerical treatment of this singularity that is validated by comparisons to the analytical solution for planar channel flow. An interesting observation stemming from these results is that the usual hypothesis of considering the flow as being isothermal is not correct anymore for a gas accelerated by a pressure gradient; the characteristics of the flow are the same but the quantitative results are different. The analysis of eccentric annular seals then shows that choked flow conditions produce a change in the static stiffness. For a subsonic exit section, the Lomakin effect is represented by a centering radial force opposed to the rotor displacement. For a choked exit section, the radial force stemming from an eccentricity perturbation has the same direction as the rotor displacement. The annular seal becomes then statically unstable. From the physical standpoint, this behavior is explained by the modification of the Lomakin effect, which changes sign. The pressure and Mach number variations along the seal depict the influence of high compressible flow regimes on the Lomakin effect. This characteristic has never been depicted before.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2006;129(4):1035-1046. doi:10.1115/1.2436573.

Advances on the modeling of nonlinear rotor-bearing models for prediction of the dynamic shaft response of automotive turbochargers (TCs) supported on floating ring bearings (FRBs) are presented. Comprehensive test data for a TC unit operating at a top speed of 65krpm serves to validate the model predictions. The static forced performance of the support FRBs considers lubricant thermal effects, thermal expansion of the shaft and bearings, and entrance pressure losses due to centrifugal flow effects. The bearing analysis also yields linearized rotordynamic force coefficients for the inner and outer lubricant films. These coefficients are used with the rotor model to predict the synchronous response to imbalance and the system natural frequencies and stability. A method renders an accurate estimation of the test rotor imbalance by using the actual vibration measurements and influence coefficients derived from predictions using linearized bearing force coefficients. Predicted ring rotational speeds, operating radial clearances, and lubricant viscosities for the inner and outer films are the main input to the nonlinear time transient analysis. The nonlinear response model predicts the total shaft motion, with fast Fourier transforms showing the synchronous response, and amplitudes and whirl frequencies of subsynchronous motions. The predicted synchronous amplitudes are in good agreement with the measurements, in particular at high shaft speeds. The nonlinear analysis predicts multiple frequency subsynchronous motions for speeds ranging from 10krpmto55krpm (maximum speed 70krpm), with amplitudes and frequencies that correlate well with the test data. The comparisons validate the comprehensive rotor-bearings model whose ultimate aim is to save TC design time and accelerate product development.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):1047-1057. doi:10.1115/1.2747638.

A gas bearing of bump foil type comprises an underlying structure made of one or several strips of corrugated sheet metal covered by a top foil surface. The fluid film pressure needs to be coupled with the behavior of the structure for obtaining the whole bearing characteristics. Unlike in classical elasto-aerodynamic models, a foil bearing (FB) structure has a very particular behavior due to friction interfaces, bump interactions, and nonisotropic stiffness. Some authors have studied this complex behavior with the help of three-dimensional finite element simulations. These simulations evidenced a lack of reliable analytical models that can be easily implemented in a FB prediction code. The models found in the literature tend to overestimate the foil flexibility because most of them do not consider the interactions between bumps that are highly important. The present work then develops a model that describes the FB structure as a multidegree of freedom system of interacting bumps. Each bump includes three degrees of freedom linked with elementary springs. The stiffnesses of these springs are analytically expressed so that the model can be adjusted for any dimensions and material properties. Once the stiffness matrix of the whole FB structure is obtained, the entire static system is solved taking friction into account. Despite its relative simplicity, comparisons with finite elements simulations for various static load distributions and friction coefficients show a good correlation. This analytical model has been integrated into a foil bearing prediction code. The load capacity of a first generation foil bearing was then calculated using this structure model as well as other simplified theoretical approaches. Significant differences were observed, revealing the paramount influence of the structure on the static and dynamic characteristics of the foil bearing. Some experimental investigations of the static stiffness of the structure were also realized for complete foil bearings. The structure reaction force was calculated for a shaft displacement with zero rotation speed, using either the multidegree of freedom model or the usual stiffness formulas. The comparisons between theoretical and experimental results also tend to confirm the importance of taking into account the bump interactions in determining the response of the structure.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):1058-1064. doi:10.1115/1.2747641.

This paper presents a new and original method for dynamical analysis of multistage cyclic structures such as turbomachinery compressors or turbines. Each stage is modeled cyclically by its elementary sector and the interstage coupling is achieved through a cyclic recombination of the interface degrees of freedom. This method is quite simple to set up; it allows us to handle the finite element models of each stage’s sector directly and, as in classical cyclic symmetry analysis, to study the nodal diameter problems separately. The method is first validated on a simple case study which shows good agreements with a complete 360 deg reference calculation. An industrial example involving two HP compressor stages is then presented. Then the forced response application is presented in which synchronous engine order type excitations are considered.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Internal Combustion Engines

J. Eng. Gas Turbines Power. 2007;129(4):1065-1071. doi:10.1115/1.2747251.

In many applications of supersonic injection devices, three-dimensional computation that can model a complex supersonic jet has become critical. However, in spite of its increasing necessity, it is computationally costly to capture the details of supersonic structures in intricate three-dimensional geometries with moving boundaries. In large-bore stationary natural gas fueled engine research, one of the most promising mixing enhancement technologies currently used for natural gas engines is high-pressure fuel injection. Consequently, this creates considerable interest in three-dimensional computational simulations that can examine the entire injection and mixing process in engines using high-pressure injection and can determine the impact of injector design on engine performance. However, the cost of three-dimensional engine simulations—including a moving piston and the kinetics of combustion and pollutant production—quickly becomes considerable in terms of simulation time requirements. One limiting factor is the modeling of the small length scales of the poppet valve flow. Such length scales can be three orders of magnitude smaller than cylinder length scales. The objective of this paper is to describe the development of a methodology for the design of a simple geometry supersonic virtual valve that can be substituted in three-dimensional numerical models for the complex shrouded poppet valve injection system actually installed in the engine to be simulated. Downstream flow characteristics of the jets from an actual valve and various virtual valves are compared. Relevant mixing parameters, such as local equivalent ratio and turbulence kinetic energy, are evaluated in full-scale moving piston simulations that include the effect of the jet-piston interaction. A comparison of the results has indicated that it is possible to design a simple converging-diverging fuel nozzle that will produce the same jet and, subsequently, the same large-scale and turbulent-scale mixing patterns in the engine cylinder as a real poppet valve.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):1072-1078. doi:10.1115/1.2747255.

A fluidized bed-type diesel particulate filter (DPF) was applied to filter particulate matter (PM) in diesel engine exhaust gas. The effects of the fluidized bed design parameters, such as gas velocity, bed particle size, and height, on PM and smoke filtration efficiencies, and pressure drop were experimentally investigated using a single-cylinder direct injection (DI) diesel engine. High PM filtration efficiency and low pressure drop were achieved with the DPF, especially at a lower gas velocity. The PM filtration efficiency was higher with a smaller bed particle size at the lower gas velocity; however, it drastically decreased with an increase in gas velocity due to excessive fluidization of the bed particles. Increase in bed height led to higher PM filtration efficiency while causing an increase in pressure drop. The theoretical work was also conducted for further investigation of the effects of the above-mentioned parameters on PM filtration. These results indicated that diffusion filtration was the dominant mechanism for PM filtration under the conditions of this study and that the decrease in PM filtration efficiency at high gas velocity was caused by a deterioration in the diffusion filtration. The bed particle diameter and the bed height should be optimized in order to obtain a high filtration efficiency without increasing the DPF size.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2006;129(4):1079-1087. doi:10.1115/1.2718221.

In this paper, a multimode combustion system was developed in a gasoline direct injection engine. A two-stage fuel-injection strategy, including flexible injection timings and flexible fuel quantity, is adopted as a main means to form desired mixture in the cylinder. The combustion system can realize five combustion modes. The homogeneous charge spark ignition (HCSI) mode was used at high load to achieve high-power output density; stratified charge spark ignition (SCSI) was adopted at intermediate load to get optimum fuel economy; stratified charge compression ignition (SCCI) was introduced at transient operation between SI and CI mode. Homogeneous charge compression ignition (HCCI) was utilized at part load to obtain ultralow emissions. Reformed charge compression ignition (RCCI) was imposed at low load to extend the HCCI operation range. In SI mode, the stratified concentration is formed by introducing a second fuel injection in the compression stroke. This kind of stratified mixture has a faster heat release than the homogeneous mixture and is primarily optimized to reduce the fuel consumption. In CI mode, the cam phase configurations are switched from positive valve overlap to negative valve overlap (NVO). The test results reveal that the CI combustion is featured with a high gradient pressure after ignition and has advantages in high thermal efficiency and low NOx emissions over SI combustion at part load.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):1088-1094. doi:10.1115/1.2719262.

A project to reduce frictional losses from natural gas engines is currently being carried out by a collaborative team from Waukesha Engine Dresser, Massachusetts Institute of Technology (MIT), and Colorado State University (CSU). This project is part of the Advanced Reciprocating Engine System (ARES) program led by the U.S. Department of Energy. Previous papers have discussed the computational tools used to evaluate piston-ring/cylinder friction and described the effects of changing various ring pack parameters on engine friction. These computational tools were used to optimize the ring pack of a Waukesha VGF 18-liter engine, and this paper presents the experimental results obtained on the engine test bed. Measured reductions in friction mean effective pressure (FMEP) were observed with a low tension oil control ring (LTOCR) and a skewed barrel top ring (SBTR). A negative twist second ring (NTSR) was used to counteract the oil consumption increase due to the LTOCR. The LTOCR and SBTR each resulted in a 0.50% improvement in mechanical efficiency (ηmech).

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):1095-1105. doi:10.1115/1.2719265.

An experimental and numerical analysis of the intake system of a production high performance four-stroke motorcycle engine was carried out. The aim of the work was to characterize the fluid dynamic behavior of the engine during the intake phase and to evaluate the capability of the most commonly used two-equation turbulence models to reproduce the in-cylinder flow field for a very complex engine head. Pressure and mass flow rates were measured on a steady-flow rig. Furthermore, velocity measurements were obtained within the combustion chamber using laser Doppler anemometry (LDA). The experimental data were compared to the numerical results using four two-equation turbulence models (standard k-ε, realizable k-ε, Wilcox k-ω, and SST k-ω models). All the investigated turbulence models well predicted the global performances of the intake system and the mean flow structure inside the cylinder. Some differences between measurements and computations were found close to the cylinder head while an improving agreement was evident moving away from the engine head. Furthermore, the Wilcox k-ω model permitted the flow field inside the combustion chamber of the engine to be reproduced and the overall angular momentum of the flux with respect to the cylinder axis to be quantified more properly.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Power Engineering

J. Eng. Gas Turbines Power. 2007;129(4):1106-1113. doi:10.1115/1.2747261.

A model is developed for determining the ideal operating point, based on maximum power output, for a thermoelectric conversion (TEC) element coupled to a combustor. In the analysis, heat recirculation from the combustor exhaust is included. Results presented here are relevant to the operating characteristics of small, combustion-driven energy systems. The model is composed of a TEC element, a combustor, a counterflow heat exchanger, and a thermal shunt resistance to the surroundings. Including the shunt is necessary due to the increased importance of this effect in small-scale thermal systems. From this combination of components, an optimal combustor operating temperature is found giving maximum power output and efficiency. The model is used to determine ideal performance figures as a function of system parameters such as the effectiveness of heat regeneration, loss of heat by conduction, and the parameters describing the thermoelectric conversion element (the so-called ZT parameter). Although a high degree of idealization is employed, the results show the importance of heat recirculation and the significance of thermal losses on system operation.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2007;129(4):1114-1124. doi:10.1115/1.2719266.

In this paper two options for H2 production, by means of natural gas, are presented and their performances are evaluated when they are integrated with advanced H2/air cycles. In this investigation two different schemes have been analyzed: an advanced combined cycle power plant (CC) and a new advanced mixed cycle power plant (AMC). The two methods for producing H2 are as follows: (1) steam methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future; and (2) partial oxidation of methane: it could offer an energy advantage because this method reduces the energy requirement of the reforming process. These hydrogen production plants require material and energetic integrations with power section and the best interconnections must be investigated in order to obtain good overall performance. With reference to thermodynamic and economic performance, significant comparisons have been made between the above introduced reference plants. An efficiency decrease and an increase in the cost of electricity has been obtained when power plants are equipped with a natural gas decarbonization section. The main results of the performed investigation are quite variable among the different H2 production technologies here considered: the efficiency decreases in a range of 5.5 percentage points to nearly 10 for the partial oxidation of the natural gas and in a range of about 9 percentage points to over 12 for the steam methane reforming. The electricity production cost increases in a range of about 41–42% for the first option and in a range of about 34–38% for the second one. The AMC, coupled with partial oxidation, stands out among the other power plant solutions here analyzed because it exhibits the highest net efficiency and the lowest final specific CO2 emission. In addition to this, economic impact is favorable when AMC is equipped with systems for H2 production based on partial oxidation of natural gas.

Commentary by Dr. Valentin Fuster

TECHNICAL PAPERS: Thermodynamic Properties

J. Eng. Gas Turbines Power. 2007;129(4):1125-1137. doi:10.1115/1.2719267.

When steam power cycles are modeled, thermodynamic properties as functions of enthalpy and entropy are required in the critical and supercritical regions (region 3 of IAPWS-IF97). With IAPWS-IF97, these calculations require cumbersome two-dimensional iteration of temperature T and specific volume v from specific enthalpy h and specific entropy s. While these calculations are not frequently required, the computing time can be significant. Therefore, the International Association for the Properties of Water and Steam (IAPWS) adopted backward equations for p(h,s) in region 3. For calculating properties as a function of h and s in the part of the two-phase region that is important for steam-turbine calculations, a backward equation Tsat(h,s) is provided. In order to avoid time-consuming iteration in determining the region for given values of h and s, equations for the region boundaries were developed. The numerical consistency of the equations documented here is sufficient for most applications in heat-cycle, boiler, and steam-turbine calculations.

Topics: Equations
Commentary by Dr. Valentin Fuster


J. Eng. Gas Turbines Power. 2007;129(4):1138-1142. doi:10.1115/1.2771568.

This paper investigates the feasibility benefits of applying fuzzy logic control (FLC) strategies for use with industrial gas turbines. Our main objective is to investigate different designs methods, design implement an FLC strategy, plant simulation in a test environment optimize the FLC, conduct tests to compare the FLC with conventional controls in scenarios relevant to the application. We have designed, implemented, and tested our simulation to the exhaust temperature control problem of a gas turbine problem. The FLC, plant simulation, existing control configuration, and integrated test environment were developed in Java. Heuristic methods were used to optimize the FLC, which proved time consuming. The paper illustrates that while implementation of the FLC is feasible, it requires more effort than the conventional controls examined.

Commentary by Dr. Valentin Fuster


J. Eng. Gas Turbines Power. 2007;129(4):1143. doi:10.1115/1.2718218.

The authors’ predictions that choked flow in an annular gas seal is likely to produce negative direct stiffness was recently borne out in tests conducted by the discussers. A smooth seal was tested in air with supply pressure 18.3bar and discharge near atmospheric pressure. The seal has dimensions: L=100mm, D=100mm, and radial clearance Cr=0.305mm. The measured direct static stiffness is negative, K=1.93MNm. The model available to the discussers is based on the work of Kleynhans and Childs (1) and would not converge at the full pressure differential. The direct stiffness predicted by this model becomes negative and its magnitude increases as the input supply pressure increases from 10bars, but the code stops converging above a δP of 13bars. What do the authors predict for this seal and the test conditions provided above? Additional test results are available for the seal in (2).

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In