Research Papers: Gas Turbines: Controls, Diagnostics, and Instrumentation

J. Eng. Gas Turbines Power. 2013;135(8):081601-081601-13. doi:10.1115/1.4024089.

Exhaust gas recirculation (EGR) is extensively employed in diesel combustion engines to achieve nitrogen oxides emission targets. The EGR is often cooled in order to increase the effectiveness of the strategy, even though this leads to a further undesired impact on particulate matter and hydrocarbons. Experimental tests were carried out on a diesel engine at a dynamometer rig under steady-state speed and load working conditions that were considered relevant for the New European Driving Cycle. Two different shell and tube-type EGR coolers were compared, in terms of the pressure and temperature of the exhaust and intake lines, to evaluate thermal effectiveness and induced pumping losses. All the relevant engine parameters were acquired along EGR trade-off curves, in order to perform a detailed comparison of the two coolers. The effect of intake throttling operation on increasing the EGR ratio was also investigated. A purposely designed aging procedure was run in order to characterize the deterioration of the thermal effectiveness and verify whether clogging of the EGR cooler occurred. The EGR mass flow-rate dependence on the pressure and temperature upstream of the turbine as well as the pressure downstream of the EGR control valve was modeled by means of the expression for convergent nozzles. The restricted flow-area at the valve-seat passage and the discharge coefficient were accurately determined as functions of the valve lift.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081602-081602-7. doi:10.1115/1.4024259.

Oil system architecture in aero engines has remained almost the same for the last 30 years. At least one oil feed pump is responsible for distributing pressurized oil into the bearing chambers, and several scavenge pumps are responsible for evacuating the bearing chambers from the oil and the air mixture. Air is used as the sealing medium in bearing chambers and is the dominant medium in terms of volume occupation and expansion phenomena. In order to simplify the oil system architecture and thus improve the system's reliability with less mechanical parts and also decrease weight, an ejector system has been designed for scavenging bearing chambers. The idea behind the ejector is to use high-pressure oil from the feed pump and use it for feeding the ejector's primary jet. Through the momentum transfer between the pressurized oil at the jet's tip and the two-phase mixture of air and oil from the bearing chamber, the mixture will be discharged into the oil tank. In order to design the ejector for aero engine applications, engine-relevant performance conditions had to be considered. The design was performed using a one-dimensional analysis tool and then considerably refined by using the numerical tool ansys cfx. In a further step, the ejector was manufactured out of pure quartz glass and was tested in a lube rig with a bearing chamber, which has evolved from a real engine application. In the bearing chamber, engine-relevant performance conditions were simulated. Through the provided instrumentation for pressures, temperatures, and air/oil flows, the performance characteristics of the ejector were assessed and were compared to the analytic and numerical results. A high-speed camera was used to record the two-phase flow downstream of the bearing chamber in the scavenge pipe. This work is part of the European Union-funded research program Engine LUBrication System TechnologieS (ELUBSYS) within the 7th EU Frame Programme for Aeronautics and Transport (AAT.2008.4.2.3).

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081603-081603-7. doi:10.1115/1.4024258.

For the past 25 years brush seal technologies have evolved into the aero engine designs and, more generally, into the gas turbine world, not only for sealing gas areas at different pressure levels but also for sealing gas/liquid environments. This is the case in an aero engine where the bearing chambers are sealed. Aero engine bearing chambers enclose oil lubricated components such bearings and gears. In order to avoid contamination of the turbo machinery through oil loss, air blown seals are used to retain the oil into the bearing chamber. Oil loss may cause coking or ignition with the probability of an uncontained destruction of rotating parts such as disks or blades. It may also cause contamination of the air conditioning system with oil fumes thus causing health problems to the passengers and crew from such exposure. The most widely known seals for bearing chamber sealing are the labyrinth seals, however, in recent years brush seals and carbon seals have also been used. The latter are contact seals; that is, they may be installed having zero clearance to the rotating part and lift during operation when their air side is pressurized. During this survey an actual aero engine bearing chamber was modified to run with brush seals in a simulating rig. Two types of brush seals were used: (a) with bristles made of Kevlar, and (b) bristles made of a metallic material. Both types were installed with an overlap to the rotor. The targets set were twofold: (a) to measure the transient temperatures in the rotor and particularly in the contact zone between the bristles and the rotor, and (b) to measure the air leakage through the seals at different operating conditions. In order to obtain the transient temperature measurements with high fidelity, a new pyrometric technique was developed and was applied for the first time in brush seals. This technique has enabled placement of the pyrometer into the bristle's pack of the seal adjacent to the rotating surface and it could record the frictional temperature evolution in the bristles/rotor contact zone during acceleration or deceleration of the rotor. Additionally, the air consumption of the seals was measured and was compared to the air consumption through the labyrinth seals. For the metallic brush seal, up to 80% of the required sealing air can be saved, which can result, in turn, into a reduction in fuel burned by up to 1%. Furthermore, a design simplification of the bearing chamber architecture can be achieved by taking into account the reduced air flow. Even though the rotor was accelerated to high speeds up to 19,500 rpm, the produced temperature overshoots in the seal/rotor contact zone have caused no deterioration in either the materials or the oil.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Industrial & Cogeneration

J. Eng. Gas Turbines Power. 2013;135(8):082001-082001-10. doi:10.1115/1.4023752.

A hydrogen-fueled two-stroke prototype demonstrator based on a 9.9 hp (7.4 kW) production gasoline marine outboard engine is presented, which, while matching the original engine's rated power output on hydrogen, achieves a best-point gross indicated thermal efficiency (ITE) of 42.4% at the ICOMIA mode 4 operating point, corresponding to 80% and 71.6% of the rated engine speed and torque, respectively. The brake thermal efficiency (BTE) at the rated power is 32.3%. Preliminary exhaust gas measurements suggest that the engine could also meet the most stringent CARB 5-Star marine spark-ignition emission standards limiting HC + NOx emissions to 2.5 g/kWh without any after-treatment. These are realized in a cost-effective concept around a proven two-stroke base engine and a low-pressure direct-injected gaseous hydrogen (LPDI GH2) system, which employs no additional fuel pump and is uniquely adapted from volume production components. Later fuel injection is found to improve thermal efficiency at the expense of increased NOx emissions and, at the extreme, increased cyclic variation. These observations are hypothesized and supported by phenomenological inferences of the observed trends of combustion duration, NOx concentration, and indicated mean effective pressure (IMEP) variance to be due to increasing charge stratification with the later timings. This work outlines the pathway—including investigations of several fuel delivery strategies with limited success—leading to the current status, including design, modeling with GT-POWER, delivery of lube oil, lubrication issues using hydrogen, and calibration sweeps. The experimental results comprising steady-state dynamometer performance, cylinder pressure traces, NOx emission measurements, along with heat release analyses, support the reported numbers and the key finding that late fuel injection timing and charge stratification drive the high efficiencies and the NOx trade-off; this is discussed and forms the basis for future work.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Heat Transfer

J. Eng. Gas Turbines Power. 2013;135(8):081901-081901-12. doi:10.1115/1.4023939.

There are numerous gas turbine applications in power generation and mechanical drive service where power drop during the periods of high ambient temperature has a very detrimental effect on the production of power or process throughput. Several geographical locations experience very high temperatures with low coincident relative humidities. In such cases media evaporative cooling can be effectively applied as a low cost power augmentation technique. Several misconceptions exist regarding their applicability to evaporative cooling, the most prevalent being that they can only be applied in extremely dry regions. This paper provides a detailed treatment of media evaporative cooling, discussing aspects that would be of value to an end user, including selection of climatic design points, constructional features of evaporative coolers, thermodynamic aspects of its effect on gas turbines, and approaches to improve reliability. It is hoped that this paper will be of value to plant designers, engineering companies, and operating companies that are considering the use of media evaporative cooling.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081902-081902-8. doi:10.1115/1.4024257.

Bearings for aero engine applications are subjected to a high thermal impact because of the elevated speeds and loads. The high rate of heat generation in the bearing cannot be sustained by the materials used and, in the absence of lubrication, will fail within seconds. For this reason, aero engine bearings have to be lubricated and cooled by a continuous oil stream. The heat that is generated in the bearings through friction is transferred into the oil. Oil itself has limited capabilities and can only remove heat as long as its temperature does not reach critical limits. When the critical limits have been reached or even exceeded, the oil will suffer chemical decomposition (coking) with loss of its properties and subsequently cause a detrimental impact on the rotating machinery. Oil is normally transferred into the bearings through holes in the inner ring, thus taking advantage of the centrifugal forces due to the rotation. On its way through the bearing, the oil continuously removes heat from the inner ring, the rolling elements, and the bearing cage until it reaches the outer ring. Since the oil has already been heated up, its capability to remove heat from the outer ring is considerably reduced. The idea to provide the bearing with an “unlimited” quantity of oil to ensure proper cooling cannot be considered, since an increase in the oil quantity leads to higher parasitic losses (churning) in the bearing chamber and increased requirements on the engine's lubrication system in terms of storage, scavenging, cooling, weight, etc., not mentioning the power needed to accomplish all these. In this sense, the authors have developed a method that would enable active cooling of the outer ring. Similar to fins, which are used for cooling electronic devices, a spiral groove engraved in the outer ring material would function as a fin body with oil instead of air as the cooling medium. The number of “threads” and the size of the groove design characteristics were optimized in a way that enhanced heat transfer is achieved without excessive pressure losses. An experimental setup was created for this reason, and a 167.5-mm pitch circle diameter (PCD) ball bearing was investigated. The bearing was tested with and without the outer ring cooling. A reduction of 50% of the lubricant flow through the inner ring associated with a 30% decrease in heat generation was achieved.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

J. Eng. Gas Turbines Power. 2013;135(8):081501-081501-14. doi:10.1115/1.4024180.

Homogeneous charge compression ignition (HCCI) combustion is widely regarded as an attractive option for future high efficiency gasoline engines. HCCI combustion permits operation with a highly dilute, well mixed charge, resulting in high thermal efficiency and extremely low NOx and soot emissions, two qualities essential for future propulsion system solutions. Because HCCI is a thermokinetically dominated process, full understanding of how combustion chamber boundary thermal conditions affect the combustion process are crucial. This includes the dynamics of the effective chamber wall surface temperature, as dictated by the formation of combustion chamber deposits (CCD). It has been demonstrated that, due to the combination of CCD thermal properties and the sensitivity of HCCI to wall temperature, the phasing of autoignition can vary significantly as CCD coverage in the chamber increases. In order to better characterize and quantify the influence of CCDs, a numerical methodology has been developed which permits calculation of the crank-angle resolved local temperature profile at the surface of a layer of combustion chamber deposits. This unique predictor-corrector methodology relies on experimental measurement of instantaneous temperature underneath the layer, i.e., at the metal-CCD interface, and known deposit layer thickness. A numerical method for validation of these calculations has also been devised. The resultant crank-angle resolved CCD surface temperature and heat flux profiles both on top and under the CCD layer provide valuable insight into the near wall phenomena, and shed light on the interplay between the dynamics of the heat transfer process and HCCI burn rates.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081502-081502-8. doi:10.1115/1.4023886.

The aim of this study was to compare single- and twin-shaft oxy-fuel gas turbines in a semiclosed oxy-fuel combustion combined cycle (SCOC–CC). This paper discussed the turbomachinery preliminary mean-line design of oxy-fuel compressor and turbine. The conceptual turbine design was performed using the axial through-flow code luax-t, developed at Lund University. A tool for conceptual design of axial compressors developed at Chalmers University was used for the design of the compressor. The modeled SCOC–CC gave a net electrical efficiency of 46% and a net power of 106 MW. The production of 95% pure oxygen and the compression of CO2 reduced the gross efficiency of the SCOC–CC by 10 and 2 percentage points, respectively. The designed oxy-fuel gas turbine had a power of 86 MW. The rotational speed of the single-shaft gas turbine was set to 5200 rpm. The designed turbine had four stages, while the compressor had 18 stages. The turbine exit Mach number was calculated to be 0.6 and the calculated value of AN2 was 40 · 106 rpm2m2. The total calculated cooling mass flow was 25% of the compressor mass flow, or 47 kg/s. The relative tip Mach number of the compressor at the first rotor stage was 1.15. The rotational speed of the twin-shaft gas generator was set to 7200 rpm, while that of the power turbine was set to 4800 rpm. A twin-shaft turbine was designed with five turbine stages to maintain the exit Mach number around 0.5. The twin-shaft turbine required a lower exit Mach number to maintain reasonable diffuser performance. The compressor turbine was designed with two stages while the power turbine had three stages. The study showed that a four-stage twin-shaft turbine produced a high exit Mach number. The calculated value of AN2 was 38 · 106 rpm2m2. The total calculated cooling mass flow was 23% of the compressor mass flow, or 44 kg/s. The compressor was designed with 14 stages. The preliminary design parameters of the turbine and compressor were within established industrial ranges. From the results of this study, it was concluded that both single- and twin-shaft oxy-fuel gas turbines have advantages. The choice of a twin-shaft gas turbine can be motivated by the smaller compressor size and the advantage of greater flexibility in operation, mainly in the off-design mode. However, the advantages of a twin-shaft design must be weighed against the inherent simplicity and low cost of the simple single-shaft design.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081503-081503-8. doi:10.1115/1.4023887.

Gas turbines offer a high operational flexibility and a good turn down ratio to meet future requirements of power production. In this context, stable operation over a wide range and for different blends of fuel is requested. Thermoacoustic stability assessment is crucial for accelerating the development and implementation of new combustion systems. The results of nonlinear and linear thermoacoustic stability assessments are compared on the basis of recent measurements of flame describing functions and thermoacoustic stability of a model swirl combustor operating in the fully turbulent regime. The different assessment methods are outlined. The linear thermoacoustic stability assessment yields growth rates of the thermoacoustic instability whereas the limit cycle amplitude is predicted by the nonlinear stability method. It could be shown that the predicted limit cycle amplitudes correlate well with the growth rates of excitation obtained from linear modeling. Hence, for screening the thermoacoustic stability of different design approaches a linear assessment may be sufficient while for detailed prediction of the dynamic pressure amplitude more efforts have to be spent on the nonlinear assessment including the analysis of the nonlinear flame response.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081504-081504-6. doi:10.1115/1.4024181.

This paper is a part of the research happening at the University of Illinois at Chicago together with Caterpillar Inc. for the development and validation of a split cycle clean combustion engine (SCCCE) operating on diesel fuel. A two-cylinder variant of the SCCCE is modeled using Caterpillar's one-dimensional modeling software Dynasty, following the geometric and boundary specifications given by the University of Pisa in their paper by Musu et al. (2010, “Clean Diesel Combustion by Means of the HCPC Concept,” SAE Paper No. 2010-01-1256). The results are compared to validate our modeling methodology. The split cycle clean combustion (SCCC) concept may significantly reduce gaseous and particulate emissions while maintaining high engine efficiency compared to the current state of the art diesel engine. Some manufacturers have been prototyping gasoline engines based on the SCCC concept, but there are no diesel fuel powered SCCC engine prototypes existing in the market. This study will be a significant contribution in the performance evaluation of SCCC diesel engines at high load and part load conditions. A one-dimensional modeling technique was chosen for this study due to the need of a fast running model that could be improved using design of experiments (DOE) analysis. Computational fluid dynamics (CFD) modeling produces more accurate results but limits one's ability to model a large number of configurations due to its large computational overhead that slows down the overall simulation process, thus making CFD models not feasible for this DOE. In order to accurately model an SCCC engine, we first validated our modeling methodology by reproducing results of the CFD based model presented by University of Pisa in Musu et al. (2010, “Clean Diesel Combustion by Means of the HCPC Concept,” SAE Paper No. 2010-01-1256). A satisfactory comparison of results confirmed our modeling approach and enabled us to integrate more complex models that will be discussed in future publications.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2013;135(8):081505-081505-9. doi:10.1115/1.4024260.

Homogeneous charge compression ignition (HCCI) combustion is highly dependent on in-cylinder thermal conditions favorable to autoignition, for a given fuel. Fuels available at the pump can differ considerably in composition and autoignition chemistry; hence strategies intended to bring HCCI to market must account for the fuel variability. To this end, a test matrix consisting of eight gasoline fuels composed of blends made solely from refinery streams was investigated in an experimental, single cylinder HCCI engine. The base compositions were largely representative of gasoline one would expect to find across the United States, although some of the fuels had slightly lower average octane values than the ASTM minimum specification of 87. All fuels had 10% ethanol by volume included in the blend. The properties of the fuels were varied according to research octane number (RON), sensitivity (S=RON-MON) and the volumetric fractions of aromatics and olefins. For each fuel, a sweep of the fuelling was carried out at each speed from the level of instability to excessive ringing to determine the limits of HCCI operation. This was repeated for a range of speeds to determine the overall operability zone. The fuels were kept at a constant intake air temperature during these tests. The variation of fuel properties brought about changes in the overall operating range of each fuel, as some fuels had more favorable low load limits, whereas others enabled more benefit at the high load limit. The extent to which the combustion event changed from the low load limit to the high load limit was examined as well, to provide a relative criterion indicating the sensitivity of HCCI range to particular fuel properties.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In