0


Research Papers: Gas Turbines: Coal, Biomass, and Alternative Fuels

J. Eng. Gas Turbines Power. 2018;140(10):101401-101401-8. doi:10.1115/1.4039819.
FREE TO VIEW

Climate change is driving the world to investigate alternative sources of fuel. In order to address any potential economic shortfalls to biodiesel, one can look to its by-product, glycerin, as a potential revenue source. At the University of Kansas, a novel system converts glycerin over a nickel–alumina catalyst into a hydrogen-rich gas (syngas) that is sent to an engine-generator system in one continuous flow process. This effort describes the hardware employed in this system, and demonstrates the production of power from the reforming of glycerin. Comparison of the peak combustion pressure and combustion timing produced between the syngas generated from glycerin and propane combustion shows virtually no performance differences between the two fuels. However, emissions vary significantly due to a variance in air-to-fuel ratios between the two fuels that will require a re-optimization when running glycerin. This system has the potential to reduce power requirements at biodiesel production facilities by utilizing glycerin on-site in a low-cost manner.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

J. Eng. Gas Turbines Power. 2018;140(10):101501-101501-8. doi:10.1115/1.4039940.

Nowadays, models predicting soot emissions are neither able to describe correctly fine effects of technological changes on sooting trends nor sufficiently validated at relevant operating conditions to match design office quantification needs. Yet, phenomenological descriptions of soot formation, containing key ingredients for soot modeling exist in the literature, such as the well-known Leung et al. model (Combust Flame 1991). However, when blindly applied to aeronautical combustors for different operating conditions, this model fails to hierarchize operating points compared to experimental measurements. The objective of this work is to propose an extension of the Leung model over a wide range of condition relevant of gas turbines operation. Today, the identification process can hardly be based on laboratory flames since few detailed experimental data are available for heavy-fuels at high pressure. Thus, it is decided to directly target smoke number values measured at the engine exhaust for a variety of combustors and operating conditions from idling to take-off. A large eddy simulation approach is retained for its intrinsic ability to reproduce finely unsteady behavior, mixing, and intermittency. In this framework, The Leung model for soot is coupled to the thickened flame model (TFLES) for combustion. It is shown that pressure-sensitive laws for the modeling constant of the soot surface chemistry are sufficient to reproduce engine emissions. Grid convergence is carried out to verify the robustness of the proposed approach. Several cases are then computed blindly to assess the prediction capabilities of the extended model.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):101502-101502-9. doi:10.1115/1.4039833.

The major exhaust gas pollutants from heavy duty gas turbine engines are CO and NOx. The difficulty of predicting the concentration of these combustion products originates from their wide range of chemical time scales. In this paper, a combustion model that includes the prediction of the carbon monoxide and nitric oxide emissions is tested. Large eddy simulations (LES) are performed using a compressible code (OpenFOAM). A modified flamelet generated manifolds (FGM) approach is applied with an artificially thickened flame approach (ATF) to resolve the flame on the numerical grid, with a flame sensor to ensure that the flame is only thickened in the flame region. For the prediction of the CO and NOx emissions, pollutant species transport equations and a second, CO based, progress variable are introduced for the flame burnout zone to account for slow chemistry effects. For the validation of the models, the Cambridge burner of Sweeney et al. (2012, “The Structure of Turbulent Stratified and Premixed Methane/Air Flames—I: Non-Swirling Flows,” Combust. Flame, 159, pp. 2896–2911; 2012, “The Structure of Turbulent Stratified and Premixed Methane/Air Flames—II: Swirling Flows,” Combust. Flame, 159, pp. 2912–2929.) is employed, as both carbon monoxide and nitric oxide [Apeloig et al. (2016, “PLIF Measurements of Nitric Oxide and Hydroxyl Radicals Distributions in Swirl Stratified Premixed Flames,” 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, July 4–7.)] data are available.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Controls, Diagnostics, and Instrumentation

J. Eng. Gas Turbines Power. 2018;140(10):101601-101601-10. doi:10.1115/1.4040009.

Accurate monitoring of gas turbine performance is a means to an early detection of performance deviation from the design point and thus to an optimized operational control. In this process, the diagnosis of the combustion process is of high importance due to strict legal pollution limits as aging of the combustor during operation may lead to an observed progression of NOx emissions. The method presented here features a semi-empirical NOx formulation incorporating aging for the GT24/GT26 heavy duty gas turbines: Input parameters to the NOx-correlation are processed from actual measurement data in a simplified gas turbine model. Component deterioration is accounted for by linking changes in air flow distribution and control parameters to specific operational measurements of the gas turbine. The method was validated on three different gas turbines of the GE GT24/GT26 fleet for part- and baseload operation with a total of 374,058 long-term data points (5 min average), corresponding to a total of 8.5 years of observation, while only commissioning data were used for the formulation of the NOx correlation. When input parameters to the correlation are adapted for aging, the NOx prediction outperforms the benchmark prediction method without aging by 35.9, 53.7, and 26.2% in terms of root mean square error (RMSE) yielding a root-mean-squared error of 1.27, 1.84, and 3.01 ppm for the investigated gas turbines over a three-year monitoring period.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Manufacturing, Materials, and Metallurgy

J. Eng. Gas Turbines Power. 2018;140(10):102101-102101-14. doi:10.1115/1.4040011.

Future gas turbine engines will operate at significantly higher temperatures (∼1800 °C) than current engines (∼1400 °C) for improved efficiency and power density. As a result, the current set of metallic components (titanium-based and nickel-based superalloys) will be replaced with ceramics and ceramic matrix composites (CMCs). These materials can survive the higher operating temperatures of future engines at significant weight savings over the current metallic components, i.e., advanced ceramic components will facilitate more powerful engines. While oxide-based CMCs may not be suitable candidates for hot-section components, they may be suitable for structural and/or exhaust components. However, a more thorough understanding of the performance under relevant environment of these materials is needed. To this end, this work investigates the high-temperature durability of a family of oxide–oxide CMCs (Ox–Ox CMCs) under an engine-relevant environment. Flat Ox–Ox CMC panels were cyclically exposed to temperatures up to 1150 °C, within 240 m/s (∼0.3 M) gas flows and hot sand impingement. Front and backside surface temperatures were monitored by a single-wavelength (SW) pyrometer and thermocouple, respectively. In addition, an infrared (IR) camera was used to evaluate the damage evolution of the samples during testing. Flash thermography nondestructive evaluation (NDE) was used to elucidate defects present before and after thermal exposure.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Structures and Dynamics

J. Eng. Gas Turbines Power. 2018;140(10):102501-102501-13. doi:10.1115/1.4039730.

A test rig is built in this study to measure the rotordynamic response of a rotor supported on porous-type gas bearings. A rotor with a double impulse turbine at one end is driven by compressed air and supported on two porous type journal gas bearings and a pair of bump-type thrust gas bearings. The rotor is accelerated to ∼25 krpm and coasted down in the test. The rotor dynamic response is measured for different bearing supply pressures (i.e., 0.40 MPa, 0.45 MPa, and 0.50 MPa) and imbalance masses (i.e., 85 mg, 150 mg, and 215 mg). Synchronous and subsynchronous amplitudes are extracted from the rotor responses. The critical speed increases as the bearing supply pressure increases, but the damping ratio decreases. The onset speed of subsynchronous motion increases, and the subsynchronous amplitude decreases as the bearing supply pressure increases. The deceleration time is more than 5 min for a bearing supply pressure of 0.5 MPa, which reveals the very low drag friction of the porous gas bearings. The synchronous amplitude increases as the imbalance increases for all the tested bearing supply pressures. The critical speeds for different imbalances are almost the same, except for the out-of-phase imbalance condition under a bearing supply pressure of 0.50 MPa, in which the critical speed increases as the imbalance increases. The normalized synchronous amplitude shows the rotor-bearing system behaves almost in a linear fashion for all in-phase imbalance conditions. Nonlinear behavior is shown around the critical speed for the 215 mg out-of-phase imbalance condition under a bearing supply pressure of 0.50 MPa. The onset speed of the subsynchronous motion decreases as the imbalance increases under the in-phase imbalance condition. The predominant mode of vibration changes from cylindrical to conical and then back to cylindrical as the rotor speed decreases during the coast down test for the in-phase imbalance conditions. However, the rotor vibration mode is predominantly conical during the whole coast down test for the out-of-phase imbalance conditions.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102502-102502-8. doi:10.1115/1.4039804.

It is a common practice to use closed impeller in radial inflow turbine against the flow leakage from tip clearance of impellers, especially in small volume flow condition. It utilizes labyrinths between the shroud and the case to abate the higher pressure leakage. Experimental and computational investigations of shroud clearance flow in a radial inflow turbine with labyrinth seals are presented in this paper. Compared with the result without leakage, numerical computation result including the leakage of labyrinth seals agrees better with that of the experiment result, which indicates that the leakage of labyrinth seals cannot be neglected. Several geometrical arrangements with a series of different clearance of labyrinth seals are investigated experimentally and numerically, and the dimensionless shroud clearance is of 0%, 0.6%, 1.2%, 1.8%, 2.7%, 3.6%. Finally, the character of flow and loss is analyzed by computational fluid dynamics (CFD) tools. The results indicate that the labyrinth seal flow has no effect on the main flow passage and mainly causes different leakage mass flow.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102503-102503-8. doi:10.1115/1.4038363.

Reduced oil supply flow rates in fluid film bearings can cause cavitation, or lack of a fully developed hydrodynamic film layer, at the leading edge of the bearing pads. Reduced oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses; however, little experimental data of its effects on system stability and performance can be found in the literature. This study looks at overall system performance through observed subsynchronous vibration (SSV) patterns of a test rig operating under reduced oil supply flow rates. The test rig was designed to be dynamically similar to a high-speed industrial compressor. It consists of a flexible rotor supported by two tilting pad bearings in vintage, flooded bearing housings. Tests were conducted over a number of supercritical operating speeds and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings. A low amplitude, broadband SSV pattern was observed in the frequency domain. During supercritical operation, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. Under lightly loaded conditions, the amplitude of the subsynchronous peak increased dramatically with decreasing oil supply flow rate and increasing operating speed. Under an increased load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this SSV including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Turbomachinery

J. Eng. Gas Turbines Power. 2018;140(10):102601-102601-7. doi:10.1115/1.4040106.

The effect of engine degradation in the form of compressor fouling and compressor turbine degradation on the creep life consumption of the high-pressure (HP) turbine blades of an LM2500+ industrial gas turbine engine is investigated in this work. The degradations are flow capacity degradation and isentropic efficiency degradation. An engine model was created in Cranfield gas turbine performance and diagnostics software, pythia. Blade thermal and stress models were developed together with the Larson–Miller parameter (LMP) method for creep life analysis. The percentage decreases in creep life due to each effect were examined. For the engine considered, compressor degradation has more impact on engine creep life toward peak power operation, while HP turbine degradation has more impact on creep life at lower power levels. The results of this work will give engine operators an idea of how engine components creep life is consumed and make reasonable decisions concerning operating at part loads.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102602-102602-13. doi:10.1115/1.4039937.

Engine downsizing and down-speeding are essential in order to meet future U.S. fuel economy (FE) mandates. Turbocharging is one technology to meet these goals. Fuel economy improvements must, however, be achieved without sacrificing performance. One significant factor impacting drivability on turbocharged engines is typically referred to as “turbolag.” Since turbolag directly impacts the driver's torque demands, it is usually perceptible as an undesired slow transient boost response or as a sluggish torque response. High throughput turbochargers (TC) are especially susceptible to this dynamic and are often equipped with variable geometry turbines (VGT) to mitigate some of this effect. Assisted boosting techniques that add power directly to the TC shaft from a power source that is independent of the engine have been shown to significantly reduce turbolag. Single unit assisted turbochargers are either electrically assisted or hydraulically assisted. In this study, a regenerative hydraulically assisted turbocharger (RHAT) system is evaluated. A custom-designed RHAT system is coupled to a light duty diesel engine and is analyzed via vehicle and engine simulations for performance and energy requirements over standard test cycles. Supplier-provided performance maps for the hydraulic turbine, hydraulic turbopump were used. A production controller was coupled with the engine model and upgraded to control the engagement and disengagement of RHAT, with energy management strategies. Results show some interesting dynamics and shed light on system capabilities especially with regard to the energy balance between the assist and regenerative functions. Design considerations based on open-loop simulations are used for sizing the high-pressure accumulator. Simulation results show that the proposed RHAT turbocharger system can significantly improve engine transient response. Vehicle level simulations that include the driveline were also conducted and showed potential for up to 4% fuel economy improvement over the FTP 75 drive cycle. This study also identified some technical challenges related to optimal design and operation of the RHAT. Opportunities for additional fuel economy improvements are also discussed.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102603-102603-9. doi:10.1115/1.4040180.

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle droplets entering the compressor increase the risk of water droplet erosion. Further deposited water leads to a higher sensitivity toward fouling due to an increased stickiness of the blades. Therefore, erosion resistant hydrophobic coatings are applied to the first stages of compressors. Although some patents claim the use of such coatings the aerodynamic impact of a different wettability is not regarded so far. This issue was addressed in the field of aerodynamic efficiency of wings in heavy rain showing higher penalty for hydrophobic coatings. In this study, the issue of a different blade surface wettability in a linear transonic compressor cascade is addressed. Different coatings are applied resulting in contact angles of 51–95 deg. The inflow Mach number was fixed at design inflow Mach number, and the inflow angle was varied over a broad range. The effect on the water film pattern is analyzed in terms of position of film breakup, rivulet width, and totally wetted surface. The performance of the cascade under two-phase flow was analyzed using laser Doppler anemometry/phase Doppler anemometry measurement technique in terms of loss coefficient based on wake momentum thickness and flow turning. It is shown that the wettability of the surface has significant effects on the film structure leading to a lower fraction of wetted surface with increasing contact angle. The influence on performance is limited to effects in the proximity of the surface and is dependent on operation point. While in design conditions hydrophilic coating show lower losses, the trend is vice-versa for off-design conditions. The data represent first experimental work on the influence of surface wettability in a droplet-laden flow supporting positive features for hydrophobic coatings in gas turbine compressors.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102604-102604-11. doi:10.1115/1.4039830.

Aircraft engines are subject to deterioration due to solid particle erosion. The environmental particulates encountered in service often feature broad particle size distributions and a generally large scatter of particle properties. In order to numerically calculate the erosive change of shape of the components, experimentally calibrated erosion models are required. Due to aerodynamic and mechanical particle size effects, erosion tests with different particle size distributions have to be calibrated individually. In this study, erosion experiments under high-pressure compressor conditions are conducted using a sand-blast type erosion rig. Flat plates out of Ti6Al4V were eroded at different impingement angles. The erodent used was quartz sand with size distributions corresponding to standardized Arizona Road Dust (ARD) grades A2, A3, and A4. The particle impact conditions were investigated using a high-speed shadowgraphy technique in combination with computational fluid dynamics (CFD) computations. Dimensional analyses were carried out in respect to the particle transport process and the material removal process. A nondimensional erosion model is derived. The experimental shadowgraphy results are corrected using numerically calibrated similarity parameters for the particle impact conditions. Thus, the influence of the aerodynamic particle size effect was eliminated by correcting the impact conditions. The isolated mechanical particle size effect is demonstrated. It is shown that wear increases and that the modeled erosion rate maximum shifts toward larger impact angles when using coarser particle size distributions.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102605-102605-12. doi:10.1115/1.4038550.

The role of absolute pressure in deposition testing is reviewed from first principles. Relevant dimensionless parameters for deposition testing are developed and dynamic similarity conditions are assessed in detail. Criteria for establishing appropriate conditions for laboratory studies of deposition are established pursuant to the similarity variables. The role of pressure is particularly singled out for consideration relative to other variables such as temperature, particle size, and test article geometry/scaling. A case study is presented for deposition in a generic array of impinging jets. A fixed quantity (2 g) of 0–10 μ Arizona road dust (ARD) is delivered to the impingement array at three different temperatures (290, 500, and 725 K) and at fixed pressure ratio. Deposition results are presented for operating pressures from 1 to 15 atm. Surface scans show that the height of deposit cones at the impingement sites decreases with increasing pressure at constant temperature and pressure ratio. This reduction is explained by the lower “effective” Stokes number that occurs at high particle Reynolds numbers, yielding fewer particle impacts at high pressure. A companion computational fluid dynamics (CFD) study identifies the additional role of Reynolds number in both the impingement hole losses and the shear layer thickness.

Commentary by Dr. Valentin Fuster

Research Papers: Internal Combustion Engines

J. Eng. Gas Turbines Power. 2018;140(10):102801-102801-8. doi:10.1115/1.4039808.

The generation of particulate matter (PM) is one problem with gasoline direct-injection engines. PM is generated in high-density regions of fuel. Uniform air/fuel mixtures and short fuel-spray durations with multiple injections are effective in enabling the valves of fuel injectors not to wobble and dribble. We previously studied what effects the opening and closing of valves had on fuel spray behavior and found that valve motions in the opening and closing directions affected spray behavior and generated coarse droplets during the end-of-injection. We focused on the effects of valve wobbling on fuel spray behavior in this study, especially on the behavior during the end-of-injection. The effects of wobbling on fuel spray with full valve strokes were first studied, and we found that simulated spray behaviors agreed well with the measured ones. We also studied the effects on fuel dribble during end-of-injection. When a valve wobbled from left to right, the fuel dribble decreased in comparison with a case without wobbling. When a valve wobbled from the front to the rear, however, fuel dribble increased. Surface tension significantly affected fuel dribble, especially in forming low-speed liquid columns and coarse droplets. Fuel dribble was simulated while changing the wetting angle on walls from 60 to 5 deg. We found that the appearance of coarse droplets in sprays decreased during the end-of-injection by changing the wetting angles from 60 to 5 deg.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102802-102802-5. doi:10.1115/1.4039735.

The prospect of analysis-driven precalibration of a modern diesel engine is extremely valuable in order to significantly reduce hardware investments and accelerate engine designs compliant with stricter fuel economy regulations. Advanced modeling tools, such as CFD, are often used with the goal of streamlining significant portions of the calibration process. The success of the methodology largely relies on the accuracy of analytical predictions, especially engine-out emissions. However, the effectiveness of CFD simulation tools for in-cylinder engine combustion is often compromised by the complexity, accuracy, and computational overhead of detailed chemical kinetics necessary for combustion calculations. The standard approach has been to use skeletal kinetic mechanisms (∼50 species), which consume acceptable computational time but with degraded accuracy. In this work, a comprehensive demonstration and validation of the analytical precalibration process is presented for a passenger car diesel engine using CFD simulations and a graphical processing unit (GPU)-based chemical kinetics solver (Zero-RK, developed at Lawrence Livermore National Laboratory, Livermore, CA) on high performance computing resources to enable the use of detailed kinetic mechanisms. Diesel engine combustion computations have been conducted over 600 operating points spanning in-vehicle speed-load map, using massively parallel ensemble simulation sets on the Titan supercomputer located at the Oak Ridge Leadership Computing Facility. The results with different mesh resolutions have been analyzed to compare differences in combustion and emissions (NOx, carbon monoxide CO, unburned hydrocarbons (UHC), and smoke) with actual engine measurements. The results show improved agreement in combustion and NOx predictions with a large n-heptane mechanism consisting of 144 species and 900 reactions with refined mesh resolution; however, agreement in CO, UHC, and smoke remains a challenge.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102803-102803-12. doi:10.1115/1.4039845.

Pinnacle is developing a multicylinder 1.2 L gasoline engine for automotive applications using high-performance computing (HPC) and analysis methods. Pinnacle and Oak Ridge National Laboratory executed large-scale multidimensional combustion analyses at the Oak Ridge Leadership Computing Facility to thoroughly explore the design space. These HPC-led investigations show high fuel efficiency (∼46% gross indicated efficiency) may be achieved by operating with extremely high charge dilution levels of exhaust gas recirculation (EGR) at a light load key drive cycle condition (2000 RPM, 3 bar brake mean effective pressure (BMEP)), while simultaneously attaining high levels of fuel conversion efficiency and low NOx emissions. In this extremely dilute environment, the flame propagation event is supported by turbulence and bulk in-cylinder charge motion brought about by modulation of inlet port flow. This arrangement produces a load and speed adjustable amalgamation of swirl and counter-rotating tumble which provides the turbulence required to support stable low-temperature combustion. At higher load conditions, the engine may operate at more traditional combustion modes to generate competitive power. In this paper, the numerical results from these HPC simulations are presented. Further HPC simulations and test validations are underway and will be reported in future publications.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102804-102804-10. doi:10.1115/1.4039813.

Homogeneous charge is a preferred operation mode of gasoline direct-injection (GDI) engines. However, a limited amount of work exists in the literature for combustion models of this mode of engine operation. Current work describes a model developed to study combustion in a homogeneous charge GDI engine. The model was validated using experimental data from a 1.6 L Ford EcoBoost® engine, tested at the U.S. EPA. The combustion heat release was approximated using a double-Wiebe function, to account for the rapid initial premixed combustion followed by a gradual diffusion-like state of combustion, as observed in this GDI engine. Variables of Wiebe correlations were adjusted into a semipredictive combustion model. The effectiveness of semipredictive combustion model was tested in prediction of in-cylinder pressures. The root-mean-square (RMS) errors between experiments and numerical results were within 2.5% of in-cylinder peak pressures during combustion. The semipredictive combustion model was further studied to develop a predictive combustion model. The performance of predictive combustion model was examined by regenerating the experimental cumulative heat release. The heat release analysis developed for the GDI engine was further applied to a dual mode, turbulent jet ignition (DM-TJI) engine. DM-TJI is a distributed combustion technology with the potential to provide diesel-like efficiencies and minimal engine-out emissions for spark-ignition engines. The DM-TJI engine was observed to offer a faster burn rate and lower in-cylinder heat transfer compared to the GDI engine.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102805-102805-8. doi:10.1115/1.4039756.

In this study, the influence of the charge motion on the internal combustion in a spark ignition sewage gas-driven engine (150 kW) for combined heat and power (CHP) units was investigated. For this purpose, the geometry of the combustion chamber in the immediate vicinity to the inlet valve seats was modified. The geometrical modification measures were conducted iteratively by integrative determination of the swirl motion on a flow bench, by laser-optical methods and consecutively by combustion analysis on a test engine. Two different versions of cylinder heads were characterized by dimensionless flow and swirl numbers prior to testing their on-engine performance. Combustion analysis was conducted with a cylinder pressure indication system for partial and full load, meeting the mandatory NOx limit of 500 mg m−3. Subsuming the flow bench results, the new valve seat design has a significant enhancing impact on the swirl motion but it also leads to disadvantages concerning the volumetric efficiency. A comparative consideration of the combustion rate delivers that the increased swirl motion results in a faster combustion, hence in a higher efficiency. In summary, the geometrical modifications close to the valve seat result in increased turbulence intensity. It was proven that this intensification raises the ratio of efficiency by 1.6%.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102806-102806-9. doi:10.1115/1.4040006.

This study describes the use of an analytical model, constructed using sequential design of experiments (DOEs), to optimize and quantify the uncertainty of a diesel engine operating point. A genetic algorithm (GA) was also used to optimize the design. Three engine parameters were varied around a baseline design to minimize indicated specific fuel consumption without exceeding emissions (NOx and soot) or peak cylinder pressure (PCP) constraints. An objective merit function was constructed to quantify the strength of designs. The engine parameters were start of injection (SOI), injection duration, and injector included angle. The engine simulation was completed with a sector mesh in the commercial computational fluid dynamics (CFD) software CONVERGE, which predicted the combustion and emissions using a detailed chemistry solver with a reduced mechanism for n-heptane. The analytical model was constructed using the SmartUQ software using DOE responses to construct kernel emulators of the system. Each emulator was used to direct the placement of the next set of DOE points such that they improve the accuracy of the subsequently generated emulator. This refinement was either across the entire design space or a reduced design space that was likely to contain the optimal design point. After sufficient emulator accuracy was achieved, the optimal design point was predicted. A total of five sequential DOEs were completed, for a total of 232 simulations. A reduced design region was predicted after the second DOE that reduced the volume of the design space by 96.8%. The final predicted optimum was found to exist in this reduced design region. The sequential DOE optimization was compared to an optimization performed using a GA. The GA was completed using a population of nine and was run for 71 generations. This study highlighted the strengths of both methods for optimization. The GA (known to be an efficient and effective method) found a better optimum, while the DOE method found a good optimum with fewer total simulations. The DOE method also ran more simulations concurrently, which is an advantage when sufficient computing resources are available. In the second part of the study, the analytical model developed in the first part was used to assess the sensitivity and robustness of the design. A sensitivity analysis of the design space around the predicted optimum showed that injection duration had the strongest effect on predicted results, while the included angle had the weakest. The uncertainty propagation was studied over the reduced design region found with the sequential DoE in the first part. The uncertainty propagation results demonstrated that for the relatively large variations in the input parameters, the expected variation in the indicated specific fuel consumption and NOx results were significant. Finally, the predictions from the analytical model were validated against CFD results for sweeps of the input parameters. The predictions of the analytical model were found to agree well with the results from the CFD simulation.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102807-102807-13. doi:10.1115/1.4040092.

This study investigates the effects of engine bore size on diesel engine performance and combustion characteristics, including in-cylinder pressure, ignition delay, burn duration, and fuel conversion efficiency, using experiments between two diesel engines of different bore sizes. This study is part of a larger effort to discover how fuel property effects on combustion, engine efficiency, and emissions may change for differently sized engines. For this specific study, which is centered only on diagnosing the role of engine bore size on engine efficiency for a typical fuel, the engine and combustion characteristics are investigated at various injection timings between two differently sized engines. The two engines are nearly identical, except bore size, stroke length, and consequently displacement. Although most of this diagnosis is done with experimental results, a one-dimensional model is also used to calculate turbulence intensities with respect to geometric factors; these results help to explain observed differences in heat transfer characteristics of the two engines. The results are compared at the same brake mean effective pressure (BMEP) and show that engine bore size has a significant impact on the indicated efficiency. It is found that the larger bore engine has a higher indicated efficiency than the smaller displaced engine. Although the larger engine has higher turbulence intensities, longer burn durations, and higher exhaust temperature, the lower surface area to volume ratio and lower reaction temperature leads to lower heat losses to the cylinder walls. The difference in the heat loss to the cylinder walls between the two engines is found to increase with increasing engine load. In addition, due to the smaller volume-normalized friction loss, the larger sized engine also has higher mechanical efficiency. In the net, since the brake efficiency is a function of indicated efficiency and mechanical efficiency, the larger sized engine has higher brake efficiency with the difference in brake efficiency between the two engines increasing with increasing engine load. In the interest of efficiency, larger bore designs for a given displacement (i.e., shorter strokes or few number of cylinders) could be a means for future efficiency gains.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102808-102808-8. doi:10.1115/1.4040287.

As noise pollution remains one of the biggest hurdles posed by thermal engines, increasing efforts are made to alleviate the generation of combustion noise from the early design stage of the chamber. Since the complexity of both modern chamber geometries and the combustion process itself precludes robust analytic solutions, and since the resonant, highly three-dimensional pressure field is difficult to be measured experimentally, focus is put on the numerical modeling of the process. However, in order to optimize the resources devoted to this simulation, an informed decision must be made on which formulations are followed. In this work, the experimental cyclic dispersion of the in-cylinder pressure is analyzed in two typical compression-ignited (CI) and spark-ignited (SI) engines. Acoustic signatures and pressure rise rates (PRRs) are derived from these data, showing how while the preponderance of flame front propagation and dependency of previous cycle in SI engine noise usually calls for multicycle, more complex turbulence modeling such as large Eddy simulation (LES), simpler unsteady Reynolds-averaged Navier-Stokes (URANS) formulations can accurately characterize the more consistent pressure spectra of CI thermal engines, which feature sudden autoignition as the main noise source.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102809-102809-10. doi:10.1115/1.4040089.

Dual-fuel (DF) engines offer great fuel flexibility since they can either run on gaseous or liquid fuels. In the case of diesel pilot-ignited DF engines, the main source of energy is provided by gaseous fuel, whereas the diesel fuel acts only as an ignition source. Therefore, a proper auto-ignition of the pilot fuel is of utmost importance for combustion in DF engines. However, auto-ignition of the pilot fuel suffers from lower compression temperatures of Miller or Atkinson valve timings. These valve timings are applied to increase efficiency and lower nitrogen oxide (NOx) engine emissions. In order to improve the ignition, it is necessary to understand which parameters influence the ignition in DF engines. For this purpose, experiments were conducted and the influence of parameters, such as injection pressure, pilot fuel quantity, compression temperature, and air–fuel (A/F) equivalence ratio of the homogenous natural gas–air mixture were investigated. The experiments were performed on a periodically chargeable combustion cell using optical high-speed recordings and thermodynamic measurement techniques for pressure and temperature. The study reveals that the quality of the diesel pilot ignition in terms of short ignition delay and a high number of ignited sprays significantly depends on the injection parameters and operating conditions. In most cases, the pilot fuel suffers from too high dilution due to its small quantity and long ignition delays. This results in a small number of ignited sprays and consequently leads to longer combustion durations. Furthermore, the experiments confirm that the natural gas of the background mixture influences the auto-ignition of the diesel pilot oil.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102810-102810-9. doi:10.1115/1.4040008.

A novel decentralized control architecture is developed based on a feedback from the pressure difference across the engine which is responsible for the pumping losses and the exhaust gas recirculation (EGR) flow in diesel engines. The controller is supplemented with another feedback loop based on NOx emissions measurement. Aiming for simple design and tuning, the two control loops are designed and discussed: one manipulates the variable geometry turbine (VGT) actuator and the other manipulates the EGR valve. An experimentally validated mean-value diesel engine model is used to analyze the best pairing of actuators and set points. Emphasis is given to the robustness of this pairing based on gain changes across the entire operating region, since swapping the pairing needs to be avoided. The VGT loop is designed to achieve fast cylinder air charge increase in response to a rapid pedal tip-in by a feedforward term based on the real-time derivative of the desired boost pressure. The EGR loop relies on a feedback measurement from a NOx sensor and a real-time estimation of cylinder oxygen ratio, χcyl. The engine model is used for evaluating the designed controllers over the federal test procedure (FTP) for heavy duty (HD) vehicles. Results indicate that the control system meets all targets, namely fast air charge and χcyl control during torque transients, robust NOx control during steady-state operation, and controlled pumping losses in all conditions.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(10):102811-102811-8. doi:10.1115/1.4039934.

In this paper, pilot-ignited high pressure dual-fuel combustion of a natural gas jet is investigated on a fundamental basis by applying two separate single-hole injectors to a rapid compression expansion machine (RCEM). A Shadowgraphy system is used for optical observations, and the combustion progress is assessed in terms of heat release rates (HRRs). The experiments focus on the combined influence of injection timing and geometrical jet arrangement on the jet interaction and the impact on the combustion process. In a first step, the operational range for successful pilot self-ignition and transition to natural gas jet combustion is determined, and the restricting phenomena are identified by analyzing the shadowgraph images. Within this range, the combustion process is assessed by evaluation of ignition delays and HRRs. Strong interaction is found to delay or even prohibit pilot ignition, while it facilitates a fast and stable onset of the gas jet combustion. Furthermore, it is shown that the HRR is governed by the time of ignition with respect to the start of natural gas injection—as this parameter defines the level of premixing. Evaluation of the time of gas jet ignition within the operability map can therefore directly link a certain spatial and temporal interaction to the resulting heat release characteristics. It is finally shown that controlling the HRR through injection timing variation is limited for a certain angle between the two jets.

Commentary by Dr. Valentin Fuster

Technical Brief

J. Eng. Gas Turbines Power. 2018;140(10):104501-104501-4. doi:10.1115/1.4040091.

Lean blowout (LBO) prediction based on the local parameters in the laboratory toroidal jet-stirred reactor (TJSR) is investigated. The reactor operated on methane is studied using three-dimensional computational fluid dynamics (CFD); the results are compared with the experimental data. Skeletal chemical kinetic mechanism with the eddy dissipation concept (EDC) model is used. Flow bifurcation in the radial (poloidal) plane due to the interaction between counter-rotating vortices creates one dominating poloidal recirculation zone (PRZ) and one weaker toroidal recirculation zone (TRZ). The Damkohler (Da) number in the reactor is the highest in the stabilization vortex; it varies from about Da ∼ 2 at ϕ = 0.55 to Da ∼ 0.2–0.3 at LBO conditions. Due to the reduced turbulent dissipation rate in PRZ, the Da number is an order of magnitude higher than in TRZ. The global blowout event is predicted at the local Da = 0.2 in PRZ. Local blowout events in the regions of low Da can lead to flame instability and to a global flame blowout at a higher fuel–air ratio than predicted by the CFD. Local Da nonuniformity can be used for optimization and analysis of combustion system stability. Further research in the process parameterization and application to the practical combustion system is needed.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In