Research Papers

J. Eng. Gas Turbines Power. 2018;140(12):121001-121001-13. doi:10.1115/1.4040682.

Biodiesel engines are found to have improved soot, hydrocarbon (HC), and carbon monoxide (CO) emissions, with modestly increased nitrogen oxides (NOx) emissions. Exhaust gas recirculation (EGR) could be used for the NOx emissions control, especially in the fuel-kinetics-dominated engine combustion concepts. A detailed chemical kinetic model of methyl decanoate (MD), a biodiesel surrogate fuel, was used here to simulate the two-stage auto-ignition process of biodiesel with EGR addition. The effects of EGR constituents, including carbon dioxide (CO2), water vapor (H2O), CO and H2, were identified in a constant-pressure ignition process and in a variable pressure, variable volume process. Firstly, numerical methods were used to isolate the dilution, thermal, and chemical effects of CO2 and H2O at a constant pressure. It was found that in the biodiesel auto-ignition processes, the dilution effects of CO2 and H2O always played the primary role. Their thermal and chemical effects mainly influenced the second-stage ignition, and the chemical effect of H2O was more significant than CO2. The triple effects of CO and H2 were also analyzed at the same temperature and pressure conditions. Additionally, the sensitivity analysis and reaction pathway analysis were conducted to elucidate the chemical effects of CO and H2 on the ignition processes at different temperatures. Finally, based on a variable pressure, variable volume model simulating the engine compression stroke, the effects of CO2, H2O, CO and H2 addition under the engine operational conditions were studied and compared to those under the constant pressure conditions.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121002-121002-10. doi:10.1115/1.4040770.

This work describes a methodology used for counter-rotating (CR) propellers performance estimation. The method is implemented in an in-house program for gas turbine performance prediction, making possible the simulation of the counter-rotating open rotor (CROR) architecture. The methodology is used together with a variable geometry compressor control strategy to avoid surge conditions. Two cases are simulated under transient operation for both fixed and variable geometry compressor. The influence of the variable geometry control on the transient performance of CROR engines is evaluated and a comprehensive understanding on the transient behavior of this type of engine could be obtained. It is shown that the use of the variable geometry compressor control does not significantly affect the overall engine performance, while avoiding the surge conditions, thus ensuring the engine operation safety.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121003-121003-8. doi:10.1115/1.4040711.

A numerical second law analysis is performed to determine the entropy production due to irreversibilities in condensing steam flows. In the present work, the classical approach to calculate entropy production rates in turbulent flows based on velocity and temperature gradients is extended to two-phase condensing flows modeled within an Eulerian–Eulerian framework. This requires some modifications of the general approach and the inclusion of additional models to account for thermodynamic and kinematic relaxation processes. With this approach, the entropy production within each mesh element is obtained. In addition to the quantification of thermodynamic and kinematic wetness losses, a breakdown of aerodynamic losses is possible to allow for a detailed loss analysis. The aerodynamic losses are classified into wake mixing, boundary layer, and shock losses. The application of the method is demonstrated by means of the flow through a well-known steam turbine cascade test case. Predicted variations of loss coefficients for different operating conditions can be confirmed by experimental observations. For the investigated test cases, the thermodynamic relaxation contributes the most to the total losses and the losses due to droplet inertia are only of minor importance. The variation of the predicted aerodynamic losses for different operating conditions is as expected and demonstrates the suitability of the approach.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121004-121004-10. doi:10.1115/1.4040735.

The present paper reports experimental and numerical analyses of the macrostructures featured by a stratified swirling flame for varying stratification ratio (SR). The studies are performed with the Beihang Axial Swirler Independently Stratified (BASIS) burner, a novel double-swirled full-scale burner developed at Beihang University. Experimentally, it is found that depending on the ratio between the equivalence ratios of the methane–air mixtures from the two swirlers, the flame stabilizes with three different shapes: attached V-flame, attached stratified flame, and lifted flame. In order to better understand the mechanisms leading to the three macrostructures, large eddy simulations (LES) are performed via the open-source computational fluid dynamics (CFD) software OpenFOAM using the incompressible solver ReactingFoam. Changing SR, simulation results show good agreement with experimentally observed time-averaged flame shapes, demonstrating that the incompressible LES are able to fully characterize the different flame behaviors observed in stratified burners. When the LES account for heat loss from walls, they better capture the experimentally observed flame quenching in the outer shear layer (OSL). Finally, insights into the flame dynamics are provided by analyzing probes located near the two separate streams.

Topics: Flames , Shapes , Heat losses
Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121005-121005-11. doi:10.1115/1.4040897.

Many sources of uncertainty exist when emissions are modeled for a gas turbine combustion system. They originate from uncertain inputs, boundary conditions, calibration, or lack of sufficient fidelity in a model. In this paper, a nonintrusive polynomial chaos expansion (NIPCE) method is coupled with a chemical reactor network (CRN) model using Python to quantify uncertainties of NOx emission in a premixed burner. The first objective of uncertainty quantification (UQ) in this study is development of a global sensitivity analysis method based on the NIPCE method to capture aleatory uncertainty on NOx emission due to variation of operating conditions. The second objective is uncertainty analysis (UA) of NOx emission due to uncertain Arrhenius parameters in a chemical kinetic mechanism to study epistemic uncertainty in emission modeling. A two-reactor CRN consisting of a perfectly stirred reactor (PSR) and a plug flow reactor (PFR) is constructed in this study using Cantera to model NOx emission in a benchmark premixed burner under gas turbine operating conditions. The results of uncertainty and sensitivity analysis (SA) using NIPCE based on point collocation method (PCM) are then compared with the results of advanced Monte Carlo simulation (MCS). A set of surrogate models is also developed based on the NIPCE approach and compared with the forward model in Cantera to predict NOx emissions. The results show the capability of NIPCE approach for UQ using a limited number of evaluations to develop a UQ-enabled emission prediction tool for gas turbine combustion systems.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121006-121006-11. doi:10.1115/1.4041168.

Gas turbine engines (GTEs) are widely used for power generation, ranging from stationary power plants to airplane propulsion systems. Compressor fouling is the dominant degradation mode in gas turbines that leads to economic losses due to power deficit and extra fuel consumption. Washing of the compressor removes the fouling matter and retrieves the performance, while causing a variety of costs including loss of production during service time. In this paper, the effect of fouling and washing on the revenue of the power plant is studied, and a general solution for the optimum time between washes of the compressor under variable fouling rates and demand power is presented and analyzed. The framework calculates the savings achievable with optimization of time between washes during a service period. The methodology is utilized to optimize total costs of fouling and washing and analyze the effects and sensitivities to different technical and economic factors. As a case study, it is applied to a sample set of cumulative gas turbine operating data for a time-between-overhauls and the potential saving has been estimated. The results show considerable saving potential through optimization of time between washes.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121007-121007-13. doi:10.1115/1.4041137.

Oil-free microturbomachinery (OFT) implements compliant foil bearings because of their minute drag and ability to operate in extreme (high or low) temperature. Prominent to date, bump-foil thrust bearings integrate an underspring thin metal structure that provides resilience and material damping, and while the rotor is airborne, it acts in series with the stiffness and damping of the gas film. The design and manufacturing of foil bearings remain costly as it demands extensive engineering and actual experience. Alternative foil bearing configurations, less costly and easier to manufacture, are highly desirable to enable widespread usage of OFT. This paper details the design and manufacturing of a novel Rayleigh-step metal mesh foil thrust bearing (MMFTB) as well as its testing on a dedicated rig. Metal mesh structures offer significant material structural damping and can be easily procured at a fraction of the cost of a typical bump-foil strip layer. The MMFTB consists of a solid carrier, a number of stacked annular copper mesh sheets (wire diameter = 0.25, 0.3, and 0.41 mm), and a steel top foil (0.127 mm thick) that makes six pads (ID = 50.8 mm, OD =2 ID), each 45 deg in extent. A 3 μm polymer coats each pad, and a photochemical process etches a step 20 μm in height. Static and dynamic load measurements (without rotor speed) demonstrate that the MMFTB has structural stiffness and material damping similar to that of a publicized bump-type foil thrust bearing. A maiden test of the MMFTB with rotor speed of Ω = 15 krpm (∼80 m/s at bearing outer diameter (OD)) proved briefly the bearing operation when applying a tiny thrust load. Further tests with ambient air, a rotor speed of 40 krpm (∼212 m/s at bearing OD), and a very light load/area <7 kPa failed several of the prototype bearings, all exhibiting significant wear on one or more pads. The source of the failure is the inherent unevenness of the metal mesh stacked substructures, thus causing the pads to bulge toward the rotor collar surface before a load applies. A deficient anchoring method exacerbates the unevenness. Incidentally, a high rotor speed induced large windage that lifted the top foils pushing them against the spinning collar. As the bearing moved toward the rotating collar to begin applying thrust, the local high spots rubbed against the collar before a hydrodynamic wedge could form to separate the surfaces. Without a robust sacrificial coating, metal-to-metal contact quickly disfigured the contacting top foil pads, erasing the etched step, and leading to failure. In concept, and on paper, the mesh sheets and the top foil lay flat against the bearing carrier, giving a false sense of uniformity in the design process. In actuality, a designer must consider the manufactured states of the individual components and how they assemble. A redesign of the bearing intends to overcome the existing flaws (highlighted herein) by incorporating a thicker top foil that is well anchored (to better withstand the effects of windage), a robust sacrificial coating, and a hydrodynamic wedge accomplished via a circumferential taper on each pad.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121009-121009-9. doi:10.1115/1.4040690.

To provide pregiven quality ratings of control processes of maximal speed deviation and transient process duration is an important task for diesel generators. Calculation study of methods intended for improving transient process quality is carried out using mathematical dynamic model of diesel engine and control system. Dynamic operation modes of turbocharged engine differ considerably from static ones. Experimental study of one-cylinder diesel engine was conducted with transient condition simulation to validate approaches to the development of engine dynamic model. Based on the study results, mathematical model and computer program to calculate transient processes were developed. Calculation study of methods intended for improving diesel-generator control processes was performed using the computer program.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121010-121010-10. doi:10.1115/1.4040898.

A harmonic mistuning concept for bladed disks is analyzed in order to intentionally reduce the forced response of specific modes below their tuned amplitude level. By splitting a mode pair associated with a specific nodal diameter pattern, the lightly damped traveling wave mode of the nominally tuned blisk is superposed with its counter-rotating complement. Consequently, a standing wave is formed in which the former wave train benefits from an increase in aerodynamic damping. Unlike previous analyses of randomly perturbed configurations, the mode-specific stabilization is intentionally promoted through adjusting the harmonic content of the mistuning pattern (MT). Through a reorientation of the localized mode shapes in relation to the discrete blades, the response is additionally attenuated by an amount of up to 7.6%. The achievable level of amplitude reduction is analytically predicted based on the properties of the tuned system. Furthermore, the required degree of mistuning for a sufficient separation of a mode pair is derived.

Topics: Damping , Disks , Blades
Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121011-121011-8. doi:10.1115/1.4040845.

Domestic scale heat pumps and air conditioners are mainly driven by volumetric compressors. Yet the use of reduced scale centrifugal compressors is reconsidered due to their high efficiency and power density. The design procedure of centrifugal compressors starts with predesign tools based on the Cordier line. However, the optimality of the obtained predesign, which is the starting point of a complex and iterative process, is not guaranteed, especially for small-scale compressors operating with refrigerants. This paper proposes a data-driven predesign tool tailored for small-scale centrifugal compressors used in refrigeration applications. The predesign model is generated using an experimentally validated one-dimensional (1D) code which evaluates the compressor performance as a function of its detailed geometry and operating conditions. Using a symbolic regression tool, a reduced order model that predicts the performance of a given compressor geometry has been built. The proposed predesign model offers an alternative to the existing tools by providing a higher level of detail and flexibility. Particularly, the model includes the effect of the pressure ratio, the blade height ratio, and the shroud to tip radius ratio. The analysis of the centrifugal compressor losses allows identifying the underlying phenomena that shape the new isentropic efficiency contours. Compared to the validated 1D code, the new predesign model yields deviations below 4% on the isentropic efficiency, while running 1500 times faster. The new predesign model is, therefore, of significant interest when the compressor is part of an integrated system design process.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121012-121012-9. doi:10.1115/1.4041131.

A good prediction of the failure ratio of wind turbine (WT) components is pivotal to define a correct maintenance program and reduce the downtime periods. Even a small failure can lead to long downtime periods and high repairing costs. The installation sites, which generally have limited accessibility, and the necessity of special facilities to reach the components inside the nacelle, also play a key role in the correct management of WTs. In this study, a detailed survey on the failures occurred to the WTs managed by the Italian operator “e2i energie speciali” (more than 550 machines) over 16 years was performed and the results were analyzed in detail. Each failure was classified by considering the damaged component and the related downtime period. The analysis allowed the determination of several useful results such as the trend of failure occurrence with machine age and the identification of components and macrocomponents which are more critical in terms of both number of occurrences and downtime periods. The combination of component failure occurrences and related downtime periods was also computed to estimate which component is most critical for WT operation.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121013-121013-9. doi:10.1115/1.4040736.

This paper addresses the challenge of forecasting the future values of gas turbine measureable quantities. The final aim is the simulation of “virtual sensors” capable of producing statistically coherent measurements aimed at replacing anomalous observations discarded from the time series. Among the different available approaches, the Bayesian forecasting method (BFM) adopted in this paper uses the information held by a pool of observations as knowledge base to forecast the values at a future state. The BFM algorithm is applied in this paper to Siemens field data to assess its prediction capability, by considering two different approaches, i.e., single-step prediction (SSP) and multistep prediction (MSP). While SSP predicts the next observation by using true data as base of knowledge, MSP uses previously predicted data as base of knowledge to perform the prediction of future time steps. The results show that BFM single-step average prediction error can be very low, when filtered field data are analyzed. On the contrary, the average prediction error achieved in case of BFM multistep prediction is remarkably higher. To overcome this issue, the BFM single-step prediction scheme is also applied to clusters of time-wise averaged data. In this manner, an acceptable average prediction error can be achieved by considering clusters composed of 60 observations.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121014-121014-9. doi:10.1115/1.4040733.

Changes within the global energy market and a demand for a more flexible operation of gas- and steam-turbines lead to higher utilization of main components and raise the question how to deal with this challenge. One strategy to encounter this is to increase the accuracy of the lifetime assessment by quantifying and reducing conservatisms. At first the impact of considering a fracture mechanical notch support under creep-fatigue loading is studied by discussing the results of an extensive experimental program performed on notched round-bars under global strain control. A proposal of how to consider this fracture mechanical notch support within a lifetime assessment is discussed within the second part of the paper. Here, a theoretical finite element method (FEM)-based concept is introduced and validated by comparing the theoretical prediction with the results of the previously mentioned experimental study. Finally, the applicability of the developed and validated FEM-based procedure is demonstrated.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121015-121015-8. doi:10.1115/1.4040738.

The widespread adoption of blade integrated disks (blisks) made of titanium demands tailored regeneration processes to increase sustainability and economic efficiency. High standards regarding geometrical accuracy and functional properties as well as the unique characteristics of each type of damage complicate the repair. Thus, flexible and well-designed processes are necessary. Typically, material deposit is followed by a milling or grinding process to restore the original shape. Here, the individual repair processes not only have to be controlled but also their interaction. For example, depending on the resulting microstructure of the welded seam, the recontouring process needs to be adapted to minimize tool wear as well as shape deviations of the complex blade geometries. In this paper, the process chain for a patch repair is examined, consisting of a tungsten inert gas (TIG) welding process followed by five-axis ball nose end milling. Conventional TIG as well as a modified TIG process producing a finer grain structure and enhanced mechanical properties of deposited material was investigated. Grain refinement was achieved by SiC particles added to the weld pool. Based on the characteristics of the fusion material and static stiffness of the component, a methodology is introduced to minimize shape deviation induced by the subsequent milling process. Special attention is given to tool orientation, which has a significant impact on the kinematics and resulting process forces during milling. An electromagnetic guided machine tool is used for compensation of workpiece deflection.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121016-121016-12. doi:10.1115/1.4040909.

Propulsion diagnostic method evaluation strategy (ProDiMES) offers an aircraft engine diagnostic benchmark problem where the performance of candidate diagnostic methods is evaluated while a fair comparison can be established. In the present paper, the performance evaluation of a number of gas turbine diagnostic methods using the ProDiMES software is presented. All diagnostic methods presented here were developed at the Laboratory of Thermal Turbomachinery of the National Technical University of Athens (LTT/NTUA). Component, sensor, and actuator fault scenarios that occur in a fleet of deteriorated twin-spool turbofan engines are considered. The performance of each diagnostic method is presented through the evaluation metrics introduced in the ProDiMES software. Remarks about each methods performance as well as the detectability and classification rates of each fault scenario are made.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121017-121017-8. doi:10.1115/1.4040861.

The paper aims to give an overview over the keystones of design of the turbomachine for a supercritical CO2 (sCO2) Brayton cycle. The described turbomachine is developed as part of a demonstration cycle on a laboratory scale with a low through flow. Therefore, the turbomachine is small and operates at high rotational speed. To give an overview on the development, the paper is divided into two parts regarding the aerodynamic and mechanical design. The aerodynamic design includes a detailed description on the steps from choosing an appropriate rotational speed to the design of the compressor impeller. For setting the rotational speed, the expected high windage losses are evaluated considering the reachable efficiencies of the compressor. The final impeller design includes a description of the blading development together with the final geometry parameters and calculated performance. The mechanical analysis shows the important considerations for building a turbomachine with integrated design of the three major components: turbine, alternator, and compressor (TAC). It includes different manufacturing techniques of the impellers, the bearing strategy, the sealing components, and the cooling of the generator utilizing the compressor leakage. Concluding the final design of the TAC is shown and future work on the machine is introduced.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121018-121018-8. doi:10.1115/1.4040855.

Steady-state simulation is an important method to investigate thermodynamic processes. This is especially true for innovative micro gas turbine (MGT)-based cycles as the complexity of such systems grows. Therefore, steady-state simulation tools are required that ensure large flexibility and computation robustness. As the increased system complexity result often in more extensive parameter studies also a fast computation speed is required. While a number of steady-state simulation tools for MGT-based systems are described and applied in literature, the solving process of such tools is rarely explained. However, this solving process is crucial to achieve a robust and fast computation within a physically meaningful range. Therefore, a new solver routine for a steady-state simulation tool developed at the DLR Institute of Combustion Technology is presented in detail in this paper. The solver routine is based on Broyden's method. It considers boundaries during the solving process to maintain a physically and technically meaningful solution process. Supplementary methods are implemented and described which improve the computation robustness and speed. Furthermore, some features of the resulting steady-state simulation tool are presented. Exemplary applications of a hybrid power plant (HyPP), an inverted Brayton cycle (IBC), and an aircraft auxiliary power unit (APU) show the capabilities of the presented solver routine and the steady-state simulation tool. It is shown that the new solver routine is superior to the standard Simulink algebraic solver in terms of system evaluation and robustness for the given applications.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Aircraft Engine

J. Eng. Gas Turbines Power. 2018;140(12):121201-121201-9. doi:10.1115/1.4040822.

The effects of high shaft power offtake (POT) in a direct drive, a geared drive, and a novel turbofan configuration are investigated. A design and off-design performance analysis shows the configuration specific limitations and advantages. The more electric aircraft (MEA) concept promises to offer advantages with respect to aircraft performance, maintenance, and operating costs. The engines for the MEA concept are based on conventional turbofan architectures. These engines are designed for significantly increased shaft POT that is required by the airframe, and the shaft power is usually taken off the high-pressure (HP) spool. This can impair the off-design performance of the engine and lead to compromises during engine design and to operability limitations. Taking the power off the low-pressure (LP) spool mitigates some of the problems but has other limitations. In this work, an alternative novel turbofan architecture is investigated for its potential to avoid the problems related to high shaft POTs. This architecture is called the dual drive booster because it uses a summation gearbox to drive the booster from both the LP and HP spool. The shaft power, if taken off the booster spool, is effectively provided by both the LP and HP spools, which allows the provision of very high power levels. This new concept is benchmarked against a two-spool direct drive and a geared drive turbofan (GTF). Furthermore, it is described, how the new architecture can incorporate an embedded motor generator. The presented concept mitigates some of the problems, which are encountered during high POT in conventional configurations. In particular, the core compressors are less affected by a change in shaft POT. This allows higher POTs and gives more flexibility during engine design and operation. Additionally, the potential to use the new configuration as a gas turbine-electric hybrid engine is assessed, where electrical power boost is applied during critical flight phases. The ability to convert additional shaft power is compared with conventional configurations. Here, the new configuration also shows superior behavior because the core compressors are significantly less affected by power input than in conventional configurations. The spool speed and its variation are more suitable for electrical machines than in conventional configuration with LP spool power transfer. The dual drive booster concept is particularly suited for applications with high shaft POTs and inputs, and should be considered for propulsion of MEAs.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Combustion, Fuels, and Emissions

J. Eng. Gas Turbines Power. 2018;140(12):121501-121501-10. doi:10.1115/1.4040090.

The present paper represents a small piece of an extensive experimental effort investigating the dual-fuel operation of a light-duty spark ignited engine. Natural gas (NG) was directly injected into the cylinder and gasoline was injected into the intake-port. Direct injection (DI) of NG was used in order to overcome the power density loss usually experienced with NG port-fuel injection (PFI) as it allows an injection after intake valve closing. Having two separate fuel systems allows for a continuum of in-cylinder blend levels from pure gasoline to pure NG operation. The huge benefit of gasoline is its availability and energy density, whereas NG allows efficient operation at high load due to improved combustion phasing enabled by its higher knock resistance. Furthermore, using NG allowed a reduction of carbon dioxide emissions across the entire engine map due to the higher hydrogen-to-carbon ratio. Exhaust gas recirculation (EGR) was used to (a) increase efficiency at low and part-load operation and (b) reduce the propensity of knock at higher compression ratios (CRs) thereby enabling blend levels with greater amount of gasoline across a wider operating range. Two integral engine parameters, CR and in-cylinder turbulence levels, were varied in order to study their influence on efficiency, emissions, and performance over a specific speed and load range. Increasing the CR from 10.5 to 14.5 allowed an absolute increase in indicated thermal efficiency of more than 3% for 75% NG (25% gasoline) operation at 8 bar net indicated mean effective pressure (IMEP) and 2500 rpm. However, as anticipated, the achievable peak load at CR 14.5 with 100% gasoline was greatly reduced due to its lower knock resistance. The in-cylinder turbulence level was varied by means of tumble plates (TPs) as well as an insert for the NG injector that guides the injection “spray” to augment the tumble motion. The usage of TPs showed a significant increase in EGR dilution tolerance for pure gasoline operation, however, no such impact was found for blended operation of gasoline and NG.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121502-121502-11. doi:10.1115/1.4040175.

Pilot flames have been widely used for flame stabilization in low-emission gas turbine combustors. Effects of pilot flame on dynamic instabilities, however, are not well understood. In this work, the dynamic interactions between main and pilot flames are studied by perturbing both flames simultaneously, i.e., with a dual-input forcing. A burner is used to generate a premixed axisymmetric V-shaped methane flame stabilized by a central pilot flame. Servo valve and sirens are used to produce forcing in the pilot and main flames, respectively. A diagnostic system is applied to measure the flame structure and heat release rate. The effects of forcing frequency, forcing amplitude, phase difference between the two forcing signals as well as the Reynolds number are studied. Both the flame transfer function (FTF) and the flame dynamic position are measured and analyzed. It is found that the total flame response can be modified by the perturbation in the pilot flame. The mechanism can be attributed to the effect of pilot flame on the velocity field of the burnt side. Vortex is found to be able to amplify the pilot–main dynamic interactions under certain conditions. An analytical model is developed based on the linearized G-equation, to further understand the flame interactions through the velocity perturbations in the burnt side. Good agreements were found between the prediction and the experiment results.

Topics: Flames
Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121503-121503-18. doi:10.1115/1.4040659.

Turbulent spray combustion of n-dodecane was modeled at relevant engine conditions using two combustion models (direct integration of chemistry (DIC) and flamelet generated manifolds (FGM)) and multifidelity turbulence models (dynamic structure large eddy simulation (LES) and renormalization group (RNG) Reynolds-averaged Naiver–Stokes (RANS)). The main objective of this work is to study the effect of various combustion and turbulence models on spray behavior and quantify these effects. To reach these objectives, a recently developed kinetic mechanism and well-established spray models were utilized for the three-dimensional turbulent spray simulation at various combustion chamber initial gas temperature and pressure conditions. Fine mesh with a size of 31 μm was utilized to resolve small eddies in the periphery of the spray. In addition, a new methodology for mesh generation was proposed and investigated to simulate the measured data fluctuation in the CFD domain. The pressure-based ignition delay, flame lift-off length (LOL), species concentrations, spray, and jet penetrations were modeled and compared with measured data. Differences were observed between various combustion and turbulence models in predicting the spray characteristics. However, these differences are within the uncertainties, error, and variations of the measured data.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121504-121504-10. doi:10.1115/1.4040737.

The work in this paper investigates on how a fuel flexible microgas turbine (MGT) combustion chamber, developed by ANSALDO ENERGIA and installed in a Turbec T100 P MGT, can operate when transferring from natural gas (NG) to a hydrogen-rich syngas. A syngas composition, which satisfies the fuel supply system specifications, is identified. Such syngas contains (by volume) 45% of hydrogen, 50% of carbon dioxide, and 5% of methane. The transfer procedure from NG to syngas is defined and modeled. A series of nonreactive and reactive Reynolds-averaged numerical simulations (RANS) on a full-scale three-dimensional (3D) model of the combustion chamber is then performed. The thermo-fluid dynamics inside its casing, the combustion regimes, the heat transfer across the liner walls as well as NOx emissions are evaluated. Results provide useful information on the operational problems associated with the fuel change and on how to define a successful fuel transfer procedure.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121505-121505-11. doi:10.1115/1.4040765.

The side-wall cooling liner in a gas turbine combustor serves main purposes—heat transfer and emission control. Additionally, it functions as a passive damper to attenuate thermoacoustic instabilities. The perforations in the liner mainly convert acoustic energy into kinetic energy through vortex shedding at the orifice rims. In the previous decades, several analytical and semi-empirical models have been proposed to predict the acoustic damping of the perforated liner. In the current study, a few of the models are considered to embody the transfer matrix method (TMM) for analyzing the acoustic dissipation in a concentric tube resonator with a perforated element and validated against experimental data in the literature. All models are shown to quantitatively appropriately predict the acoustic behavior under high bias flow velocity conditions. Then, the models are applied to maximize the damping performance in a realistic gas turbine combustor, which is under development. It is found that the ratio of the bias flow Mach number to the porosity can be used as a design guideline in choosing the optimal combination of the number and diameter of perforations in terms of acoustic damping.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121506-121506-12. doi:10.1115/1.4040516.

Large eddy simulation (LES) with three-dimensional conditional moment closure (CMC) subgrid model for combustion is applied to simulate a swirl-stabilized nonpremixed methane flame with localized extinction, with special focus on the effects of heat loss to the burner surface. The convective wall heat loss is modeled through introducing a source term in the conditionally filtered total enthalpy equation for the CMC cells adjacent to the wall. The mean heat flux is high on the middle surface of the bluff body, but relatively low near its edges. The turbulent heat flux based on the gradient of the resolved temperature is relatively low compared to the laminar counterpart, but increases with the turbulent intensity. The heat loss facilitates the occurrences of extinction and re-ignition for the CMC cells immediately adjacent to the wall, evidenced by comparing flame structures in the near-wall CMC cells. This can be directly linked to the increase of the mean conditional scalar dissipation near the wall in the heat loss case. Furthermore, the degree of local extinction near the bluff body measured by conditional reactedness at stoichiometry is intensified due to the wall heat loss. However, the results also show that there is negligible influence of wall heat loss on the probability density function (PDF) of the lift-off height, demonstrating the dominance of aerodynamic effects on flame stabilization. The results are in reasonable agreement with experimental measurements.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121507-121507-7. doi:10.1115/1.4038766.

Fractal analysis is undertaken to characterize flame surface fluctuations on an unconfined turbulent premixed flame and the resulting far-field acoustics fluctuations. Results indicate that combustion noise is monofractal and is characterized by an anticorrelated structure with a Hurst exponent less than 0.5. The anticorrelated nature was identified in the pressure fluctuations as well as flame surface fluctuations for small time-scales. Additionally, results suggest that flame surface fluctuations are multifractal for large time scales. The calculated Hurst exponent increases noticeably with the equivalence ratio and decreases slightly with Reynolds number for the investigated operating conditions. Variation in the Hurst exponent for combustion noise data is compared with a case study of synthetic fluctuations comprised of linear combinations of white and 1/f2 noise. These results provide a more detailed characterization of the temporal structure of flame surface fluctuations and resulting noise emission from turbulent premixed flames than is presently known.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121508-121508-7. doi:10.1115/1.4039463.

The paper presents an experimental investigation of the thermoacoustic oscillations detection in a lean premixed pre-evaporation (LPP) combustor using acoustic signals. The LPP model combustion chamber oscillation combustion test platform was designed and built; the thermal parameters signal, the acoustic signal, and the dynamic pressure signal were collected under the steady condition and the transition condition, and been analyzed comparatively. The experimental result shows that, at the same inlet air speed, the dominant frequency of the combustion chamber is proportional to the thermal load, while at the same fuel flow, the main frequency of the combustion chamber does not change with the changing of air speed. In addition, the doubling frequency of the acoustic signal is more obvious than the pressure signals, which show that the interference of the acoustic signal is less. In the transition condition, the pulse energy of the acoustic signal is obviously increased after ignition. The dominant frequency energy increases when the working condition begins to change in the stable to oscillation combustion condition. The dominant frequency energy decreases when the working condition begins to change in the oscillation to stable combustion condition. During the flameout condition, the oscillating energy begins to decay from the high frequency region. For the acoustic signal is less disturbed than the pressure signal and it can obtain the same result with the pressure signal in the oscillation condition and the transition condition, acoustic diagnostic is an auxiliary method for combustion oscillation in LPP combustor.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):121509-121509-10. doi:10.1115/1.4040821.

A numerical optimization study is performed on a small-scale high-swirl cavity-stabilized combustor. A parametric geometry is created in cad software that is coupled with meshing software. The latter automatically transfers meshes and boundary conditions to the solver, which is coupled with a postprocessing tool. Steady, incompressible three-dimensional simulations are performed using a multiphase Realizable k-ε Reynolds-averaged Navier-Stokes (RANS) approach with a nonadiabatic flamelet progress variable (FPV) model. There are nine geometrical input parameters. There are five output parameters, viz., pattern factor (PF), RMS of the profile factor deviation, averaged exit temperature, averaged exit swirl angle, and total pressure loss. An iterative design of experiments (DOE) with a recursive Latin hypercube sampling (LHS) is performed to filter the most important input parameters. The five major input parameters are found with Spearman's order-rank correlation and R2 coefficient of determination. The five input parameters are used for the adaptive multiple objective (AMO) optimization. This provided a candidate design point with the lowest weighted objective function, which was verified through computational fluid dynamic (CFD) simulation. The combined filtering and optimization procedures improve the baseline design point in terms of pattern and profile factor. The former halved from that of the baseline design point, whereas the latter turned from an outer peak to a center peak profile, closely mimicking an ideal profile. The exit swirl angle favorably increased 25%. The averaged exit temperature and the total pressure losses remained nearly unchanged from the baseline design point.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Structures and Dynamics

J. Eng. Gas Turbines Power. 2018;140(12):122501-122501-11. doi:10.1115/1.4040418.

Limaçon machine, of which the relative motion between the rotor and housing follows the limaçon curve, belongs to a class of rotary positive displacement machines. The profiles of rotors and housings of those machines can be constructed of either limaçon or circular curves, hence the names: limaçon-to-limaçon, circolimaçon, and limaçon-to-circular machines. This paper presents the investigation into the thermodynamic performance of the limaçon-to-circular machines with the presence of apex seals and inlet valve. This paper sets out by briefly introducing the limaçon technology and the construction of the limaçon-to-circular machine working volume. The mathematical descriptions of ports' positions and areas have also been introduced. The paper then discusses the flow and phase composition of working fluid through the working chambers as well as how the fluid velocity is modeled and calculated. Then the seal dynamic model and response of inlet valve are presented followed by the machine thermodynamic model. A case study has also been presented to show the responses of seals and inlet valve during the machine operation.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122502-122502-10. doi:10.1115/1.4040813.

Reduced oil supply flow rates in fluid film bearings can cause cavitation, or lack of a fully developed film layer, over one or more of the pads due to starvation. Reduced oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses; however, little experimental data are available on its effects on system stability and dynamic performance. The study looks at the effects of oil supply flow rate on dynamic bearing performance by comparing experimentally identified damped natural frequencies and damping ratios to predictive models. A test rig consisting of a flexible rotor and supported by two tilting pad bearings in flooded housings is utilized in this study. Tests are conducted over a range of supercritical operating speeds and bearing loads while systematically reducing the oil supply flow rates provided to the bearings. Shaft response measured as a magnetic actuator is used to perform sine sweep excitations of the rotor. A single-input, multiple-output system identification technique is then used to obtain frequency response functions (FRFs) and modal parameters. All experimental results are compared to predicted results obtained from bearing models based on thermoelastohydrodynamic (TEHD) lubrication theory. Both flooded and starved model flow assumptions are considered and compared to the data. Differences in the predicted trends of the models and the experimental data across varying operating conditions are examined. Predicted pressure profiles and dynamic coefficients from the models are presented to help explain any differences in trends.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122503-122503-9. doi:10.1115/1.4040767.

This paper presents the methodology and results of the optimization of a straight-through labyrinth seal with two inclined fins against smooth-land. The optimization was performed using commercial tools implemented in the ANSYS environment, such as goal-driven optimization. The response surfaces were created based on Latin hypercube samples found from computational fluid dynamics (CFD) calculations. The CFD solver, using a steady-state scheme with the k–ω shear stress transport (SST) turbulence model, was applied. A screening algorithm was used to find the best candidates on the response surfaces. The objective function adopted in the labyrinth seal optimization was the minimization of the discharge coefficient value. A wide range of parameters of the fins position and shape were taken into account, with physically justified degrees-of-freedom. The optimization results were supported by the results of an in-house experiment performed on a stationary, linear test rig. The test rig was fed by a high-capacity vacuum air blower with high-precision hot-wire anemometry mass flow evaluation. The reductions in the leakage significantly exceed the uncertainties of the CFD model and the test rig accuracy. The factors that had the most substantial impact on the leakage reduction were the location, inclination, and thickness of the fins. The experimental results were compared with the calculations and the optimization effects, highlighting some tendencies in the labyrinth seal flow behavior. Good agreement was obtained between the optimization results and the experimental data, proving that the presented methodology is sufficient for the labyrinth seal optimization.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122504-122504-10. doi:10.1115/1.4041646.

Air foil bearings (AFBs) are introduced as promising bearings for oil-free turbomachinery applications. AFBs provide reliable operation at high speed and high temperature with negligible power loss. Hybrid air foil bearing (HAFB) technology utilizes the radial injection of externally pressurized air into the traditional hydrodynamic AFB's film thickness through orifices attached to the top foil. Previous studies have reported enhancement in the rotordynamic stability of HAFBs compared to traditional hydrodynamic AFBs. HAFBs have several orifices distributed in the circumferential direction. In this study, the effect of the circumferential location of radial injection on the rotordynamic performance of the rotor-HAFB is studied. Analytical and experimental evaluations of the rotordynamic performance of a rotor supported by two single-pad HAFBs are presented. Parametric studies are conducted using three sets of single-pad HAFBs. The circumferential locations of orifices are different for each set. The presented simulation analyses consist of time-domain orbit simulation and frequency-domain modal analysis. Imbalance responses of rotor-HAFB were measured with various orifice locations and the results agree well with predictions. Comparison of the rotordynamic performance of HAFBs with different orifice configurations demonstrates substantial improvement in rotordynamic stability as well as enhancement in the stiffness and damping coefficients of HAFBs by choosing the best circumferential location for radial injection to control rotor eccentricity and attitude angle.

Commentary by Dr. Valentin Fuster

Research Papers: Gas Turbines: Turbomachinery

J. Eng. Gas Turbines Power. 2018;140(12):122601-122601-9. doi:10.1115/1.4039935.

The evolution of the wake of a wind turbine contributes significantly to its operation and performance, as well as to those of machines installed in the vicinity. The inherent unsteady and three-dimensional (3D) aerodynamics of vertical axis wind turbines (VAWT) have hitherto limited the research on wake evolution. In this paper, the wakes of both a troposkien and a H-type VAWT rotor are investigated by comparing experiments and calculations. Experiments were carried out in the large-scale wind tunnel of the Politecnico di Milano, where unsteady velocity measurements in the wake were performed by means of hot wire anemometry. The geometry of the rotors was reconstructed in the open-source wind-turbine software QBlade, developed at the TU Berlin. The aerodynamic model makes use of a lifting line free-vortex wake (LLFVW) formulation, including an adapted Beddoes-Leishman unsteady aerodynamic model; airfoil polars are introduced to assign sectional lift and drag coefficients. A wake sensitivity analysis was carried out to maximize the reliability of wake predictions. The calculations are shown to reproduce several wake features observed in the experiments, including blade-tip vortex, dominant and minor vortical structures, and periodic unsteadiness caused by sectional dynamic stall. The experimental assessment of the simulations illustrates that the LLFVW model is capable of predicting the unsteady wake development with very limited computational cost, thus making the model ideal for the design and optimization of VAWTs.

Topics: Wakes , Blades , Rotors , Vortices , Turbines
Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122602-122602-9. doi:10.1115/1.4040285.

Steady-state stagnation temperature probes are used during gas turbine engine testing as a means of characterizing turbomachinery component performance. The probes are located in the high-velocity gas-path, where temperature recovery and heat transfer effects cause a shortfall between the measured temperature and the flow stagnation temperature. To improve accuracy, the measurement shortfall is corrected post-test using data acquired at representative Mach numbers in a steady aerodynamic calibration facility. However, probes installed in engines are typically subject to unsteady flows, which are characterized by periodic variations in Mach number and temperature caused by the wakes shed from upstream blades. The present work examines the impact of this periodic unsteadiness on stagnation temperature measurements by translating probes between jets with dissimilar Mach numbers. For conventional Kiel probes in unsteady flows, a greater temperature measurement shortfall is recorded compared to equivalent steady flows, which is related to greater conductive heat loss from the temperature sensor. This result is important for the application of post-test corrections, since an incorrect value will be applied using steady calibration data. A new probe design with low susceptibility to conductive heat losses is therefore developed, which is shown to deliver the same performance in both steady and unsteady flows. Measurements from this device can successfully be corrected using steady aerodynamic calibration data, resulting in improved stagnation temperature accuracy compared to conventional probe designs. This is essential for resolving in-engine component performance to better than ±0.5% across all component pressure ratios.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122603-122603-11. doi:10.1115/1.4040681.

A volute is one of the key components in a centrifugal compressor. The aerodynamic stability of the compressor deteriorates remarkably when a volute is employed. This paper investigates the influence of volute-induced circumferential flow distortion on aerodynamic stability of a centrifugal compressor via experimentally validated three-dimensional (3D) numerical simulation method. First, the compressor performance is analyzed based on a newly developed stability parameter. The impeller is confirmed to be the main contributor to the instability of the investigated compressor. Next, the influence of volute on impeller performance is studied by circumferentially distorted boundary conditions at the impeller exit which are extracted from flow field at the volute inlet. Results show that the performance of an impeller passage is determined by not only the back pressure but also the local gradient of pressure distribution in the circumferential direction. Moreover, these passages confronted with pressure reduction in the rotational direction are most unstable, while those confronted with pressure rise have better performance. Consequently, the circumferentially distorted distribution at impeller exit results in a loop of passage performance encapsulating the performance of uniform case. The size of the loop is enhanced by the distortion amplitude. Moreover, the influence of volute-induced distortion on the impeller performance is concluded into two main reasons: the imbalance of the force on flow and the imbalance of tip clearance flow taken by passages. The force imbalance influences the accumulation of secondary flow, while the imbalance of the tip clearance flow results in discrepancies of the low momentum flow in passages.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122604-122604-7. doi:10.1115/1.4040577.

Centrifugal compressors are one of the best choices among compressors in supercritical Brayton cycles. A supercritical CO2 centrifugal compressor increases the pressure of the fluid which state is initially very close to the critical point. When the supercritical fluid is compressed near the critical point, wide variations of fluid properties occur. The density of carbon dioxide at its critical point is close to the liquid density which leads to reduction in the compression work. This paper explains a method to overcome the simulation instabilities and challenges near the critical point in which the thermophysical properties change sharply. The investigated compressor is a centrifugal compressor tested in the Sandia supercritical CO2 test loop. In order to get results with the high accuracy and take into account the nonlinear variation of the properties near the critical point, the computational fluid dynamics (CFD) flow solver is coupled with a look-up table of properties of fluid. Behavior of real gas close to its critical point and the effect of the accuracy of the real gas model on the compressor performance are studied in this paper, and the results are compared with the experimental data from the Sandia compression facility.

Commentary by Dr. Valentin Fuster

Research Papers: Internal Combustion Engines

J. Eng. Gas Turbines Power. 2018;140(12):122801-122801-8. doi:10.1115/1.4040012.

Electrically assisted engine boosting systems lend themselves to better throttle response, wider effective operating ranges, and can provide the ability to extract excess energy during deceleration and high-load events (and store it in a vehicle's onboard batteries). This can lead to better overall vehicle performance, emissions, and efficiency while allowing for further engine downsizing and increased power density. In this research effort, a hybrid-electric turbocharger, variable-frequency drive (VFD), and novel sensorless control algorithm were developed. An 11 kW permanent-magnet (PM) machine was coupled to a commercial turbocharger via an in-line, bolt-on housing attached to the compressor inlet. A high-efficiency, high-temperature VFD, consisting of custom control and power electronics, was also developed. The VFD uses SiC MOSFETS to achieve high-switching frequency and can be cooled using an existing engine coolant loop operating at up to 105 °C at an efficiency greater than 98%. A digital sliding mode-observer sensorless speed control algorithm was created to command and regulate speed and achieved ramp rates of over 68,000 rpm/s. A two-machine benchtop motor/generator test stand was constructed for initial testing and tuning of the VFD and sensorless control algorithm. A gas blow-down test stand was constructed to test the mechanical operation of the hybrid-electric turbocharger and speed control using the VFD. In addition, a liquid-pump cart was assembled for high-temperature testing of the VFD. Initial on-engine testing is planned for later this year. This paper intends to present a design overview of the in-line, hybrid-electric device, VFD, and performance characterization of the electronics and sensorless control algorithm.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122802-122802-6. doi:10.1115/1.4040179.

The North American oil and gas industry has experienced a market pull for dual fuel (DF) engines that can run on any ratio of fuels ranging from 100% diesel to a high proportion of field gas relative to diesel, while also meeting the U.S. Tier 4 Nonroad emissions standards. A DF engine must meet complex and at times competing requirements in terms of performance, fuel tolerance, and emissions. The challenges faced in designing a DF engine to meet all of the performance and emissions requirements require a detailed understanding of the trade-offs for each pollutant. This paper will focus on the details of NOx formation for high substitution DF engines. Experimental results have demonstrated that NOx emission trends (as a function of lambda) for DF engines differ from both traditional diesel engines and lean burn natural gas (NG) engines. For high energy substitution (>70%) conditions, NOx emissions are a function of the premixed gas lambda (λng) and contain a local minimum, with NOx increasing as lambda is either leaned or richened beyond the local minimum which occurs from approximately λng = 1.7 – 1.85. It is hypothesized that at richer conditions (λng < 1.7), NOx formed in the burning of gaseous fuel results in increased total NOx emissions. At leaner conditions (λng > 1.85), the NOx formed in the diesel post flame regions, as a result of increased oxygen availability, results in increased total NOx emissions. Between these two regions there are competing effects which result in relatively constant NOx.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122803-122803-12. doi:10.1115/1.4040517.

Homogeneous charge compression ignition (HCCI) has been considered as an ideal combustion mode for compression ignition (CI) engines due to its superb thermal efficiency and low emissions of nitrogen oxides (NOx) and particulate matter. However, a challenge that limits practical applications of HCCI is the lack of control over the combustion rate. Fuel stratification and partially premixed combustion (PPC) have considerably improved the control over the heat release profile with modulations of the ratio between premixed fuel and directly injected fuel, as well as injection timing for ignition initiation. It leverages the advantages of both conventional direct injection compression ignition and HCCI. In this study, neat n-butanol is employed to generate the fuel stratification and PPC in a single cylinder CI engine. A fuel such as n-butanol can provide additional benefits of even lower emissions and can potentially lead to a reduced carbon footprint and improved energy security if produced appropriately from biomass sources. Intake port fuel injection (PFI) of neat n-butanol is used for the delivery of the premixed fuel, while the direct injection (DI) of neat n-butanol is applied to generate the fuel stratification. Effects of PFI-DI fuel ratio, DI timing, and intake pressure on the combustion are studied in detail. Different conditions are identified at which clean and efficient combustion can be achieved at a baseline load of 6 bar IMEP. An extended load of 14 bar IMEP is demonstrated using stratified combustion with combustion phasing control.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122804-122804-7. doi:10.1115/1.4040746.

An increase in lubricating oil consumption in a gasoline engine causes an increase in particulate matters in exhaust gases, poisoning the catalyst after treatment devices, abnormal combustion in a turbo-charged gasoline engine, and so on. Recent trend of low friction of a piston and piston ring tends to increase in lubricating oil consumption. Therefore, reducing oil consumption is required strongly. In this study, the effect of the position of oil drain holes on oil pressure under the oil ring and lubricating oil consumption was investigated. The oil pressure under the oil ring is measured using fiber optic pressure sensors and pressure generation mechanisms were investigated. Lubricating oil consumption was also measured using sulfur tracer method and the effects of oil drain holes hence the oil pressure were evaluated. Four types of arrangement of oil drain holes were tested. The oil pressure variations under the oil ring in the circumferential direction was measured. An increase in oil pressure was found during down-stroke of the piston. The lowest oil pressure was found for the piston with four oil drain holes. Two holes nearby the front/rear end of the piston skirt showed relatively lower pressure. The measured results of oil consumption showed good agreement to measured oil pressure under the oil ring. It was found that oil pressure under the oil ring affected oil consumption, and oil drain holes set near the front/rear end of the piston skirt were effective for reducing oil consumption.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122805-122805-11. doi:10.1115/1.4040515.

Particulate matter (PM) emissions from gasoline direct injection (GDI) engines are a concern due to the health effects associated with ultrafine PM. This experimental study investigated sources of PM emissions measurement variability observed in previous tests and also examined the effect of ethanol content in gasoline on PM emissions. Some engine operating parameters (fuel and oil temperature, positive crankcase ventilation filtration) and test conditions (dilution air conditions) were studied and controlled but could not account for the level of measurement variability observed. Fourier transform infrared spectrometry (FTIR) measurements of gas phase hydrocarbon emissions provided evidence that changes in fuel composition were responsible for the variability. Exhaust emissions of toluene and ethanol were correlated positively with PM emissions, while emissions of isobutylene correlated negatively. Exhaust emissions of toluene and isobutylene were interpreted as markers of gasoline aromatic content and gasoline volatility, respectively. Tests conducted with gasoline containing added toluene (10% v/v) supported this hypothesis and led to the overall conclusion that the PM emissions variability observed can be attributed to changes in the composition of the pump gasoline being used. Tests conducted with gasoline containing added ethanol (10% and 30% v/v) found that increasing ethanol fuel content increased PM emissions at the steady-state operating condition utilized.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2018;140(12):122806-122806-7. doi:10.1115/1.4039424.

Low temperature and dilute homogenous charge compression ignition (HCCI) and spark-assisted compression ignition (SACI) can improve fuel efficiency and reduce engine-out NOx emissions, especially during lean operation. However, under lean operation, these combustion modes are unable to achieve Environmental Protection Agency (EPA) Tier 3 emissions standards without the use of lean aftertreatment. The three way catalyst (TWC)-SCR lean aftertreatment concept investigated in this work uses periodic-rich operation to produce NH3 over a TWC to be stored on a selective catalytic reduction (SCR) catalyst for NOx conversion during subsequent lean operation. Experiments were performed with a modified 2.0 L gasoline engine that was cycled between lean HCCI and rich SACI operation and between lean and rich spark-ignited (SI) combustion to evaluate NOx conversion and fuel efficiency benefits. Different lambda values during rich operation and different times held in rich operation were investigated. Results are compared to a baseline case in which the engine is always operated at stoichiometric conditions. SCR system calculations are also presented to allow for comparisons of system performance for different levels of stored NH3. With the configuration used in this study, lean/rich HCCI/SACI operation resulted in a maximum NOx conversion efficiency of only 10%, while lean/rich SI operation resulted in a maximum NOx conversion efficiency of 60%. If the low conversion efficiency of HCCI/SACI operation could be improved through higher brick temperatures or additional SCR bricks, calculations indicate that TWC-SCR aftertreatment has the potential to provide attractive fuel efficiency benefits and near-zero tailpipe NOx. Calculated potential fuel efficiency improvement relative to stoichiometric SI is 7–17% for lean/rich HCCI/SACI with zero tailpipe NOx and −1 to 5% for lean/rich SI with zero tailpipe NOx emissions. Although the previous work indicated that the use of HCCI/SACI increases the time for NH3 to start forming over the TWC during rich operation, reduces NH3 production over the TWC per fuel amount, and increases NH3 slip over the SCR catalyst, if NOx conversion efficiency could be enhanced, improvements in fuel efficiency could be realized while meeting stringent tailpipe NOx standards.

Commentary by Dr. Valentin Fuster

Technical Brief

J. Eng. Gas Turbines Power. 2018;140(12):124501-124501-4. doi:10.1115/1.4039820.

This study presents additional important findings to the results of the research paper; “Optimization of the efficiency of stall control using air injection for centrifugal compressors” published in the Journal of Engineering for Gas Turbines and Power in 2015 (Halawa, T., Gadala, M. S., Alqaradawi, M., and Badr, O., 2015, “Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors,” ASME J. Eng. Gas Turbines Power, 137(7), p. 072604). The aim of this study is to make a fine determination of the injection angle, which provides the best stable condition when the compressor operates close to stall condition. A relatively narrower range of injection angles with smaller intervals was selected comparing to the results of the referred published paper, which clarified that the best injection angle is 30 deg. External air was injected close to the diffuser entrance at the shroud surface. Injection was applied with mass flow rate equals 1.5% of the design compressor inlet mass flow rate with injection angles ranged from 16 deg to 34 deg measured from the tangential direction at the vaneless region. It was found that both of injection angles of 28 deg and 30 deg achieved the best results in terms of compressor stabilization but each one of them has a specific advantage comparing to the other one. Using injection angle of 28 deg provided the lowest kinetic energy losses while the best orientation of the fluid through diffuser resulted when using an injection angle of 30 deg.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In