Newest Issue

Research Papers

J. Eng. Gas Turbines Power. 2019;141(10):101001-101001-9. doi:10.1115/1.4044217.

A generalized and efficient technique of reduced-order model (ROM) is proposed in this paper for stability and steady-state response analysis of an asymmetric rotor based on three-dimensional (3D) finite element model. The equations of motion of the asymmetric rotor-bearing system are established in the rotating frame. Therefore, the periodic time-variant coefficients only exist at a tiny minority of degrees-of-freedom (DOFs) of bearings. During the model reduction process, the asymmetric rotor-bearing system is divided into rotor and bearings. Only the rotor was reduced. And the physical coordinates of bearings are kept in the reduced model during reduction. Then, the relationship between the rotor and bearings is established by inserting periodic time-variant stiffness and damping matrix of bearings into the reduced model of rotor. There is no reduction to the matrices of bearings, which guarantees the accuracy of the calculation. This technique combined with fixed-interface component mode synthesis (CMS) and free-interface CMS is compared with other existing modal reduction method on an off-center asymmetric rotor and shows good performance.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101002-101002-8. doi:10.1115/1.4044195.

Biogas is a promising alternative fuel to reduce the consumption of petroleum-based fuels in internal combustion (IC) engines. In this work, the effect of various biogas compositions on the performance, combustion, and emission characteristics of a spark-ignition (SI) engine is investigated. Additionally, the effect of Wobbe index (WI) of various fuel compositions was also evaluated on the operational limits of the engine. While considering a wide range of biogas compositions (including bio-methane), the percentage of carbon dioxide (CO2) (in a blend of methane and CO2) was increased from 0 to 50% (by volume). A single-cylinder, water-cooled, SI engine was operated at 1500 rpm over a wide range of operating loads with compression ratio of 8.5:1. With the increase in WI of the fuel, both low (limited by coefficient of variation (COV) of indicated mean effective pressure (IMEP)) and high (limited by pre-ignition) operating loads were decreased; however, it was found that the overall operating range was increased. Results also showed that for a given operating load, with the increase of CO2 percentage in the fuel, the brake thermal efficiency was decreased, and the flame initiation and combustion durations were increased. The brake thermal efficiency was decreased from 16.8% to 13.7%, when CO2 was increased from 0% to 40% in methane–CO2 mixture at 8 N·m load. Concerning to emissions, a considerable decrease was noted in nitric oxide, whereas hydrocarbon, carbon monoxide and carbon dioxide emissions were increased, with the increase in CO2 percentage.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101003-101003-10. doi:10.1115/1.4044206.

This paper presents a simple but complete design method to obtain arbitrary vortex design tube-axial fans starting from fixed size and rotational speed. The method couples the preliminary design method previously suggested by the authors with an original revised version of well-known blade design methods taken from the literature. The aim of this work is to verify the effectiveness of the method in obtaining high-efficiency industrial fans. To this end, the method has been applied to a 315 mm rotor-only tube-axial fan having the same size and rotational speed, and a slightly higher flow rate coefficient, as another prototype previously designed by the authors, which was demonstrated experimentally to noticeably increase the pressure coefficient of an actual 560 mm industrial fan. In contrast, no constraints are imposed on the hub-to-tip ratio and pressure coefficient. The new design features a hub-to-tip ratio equal to 0.28 and radially stacked blades with aerodynamic load distribution corresponding to a roughly constant swirl at rotor exit. The ISO-5801 experimental tests showed fan efficiency equal to 0.68, which is 6% higher than that of the previous prototype. The pressure coefficient is lower, but still 12% higher than that of the benchmark 560 mm industrial fan.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101004-101004-10. doi:10.1115/1.4044240.

The work presented in this paper combines multiple nonsynchronous planar measurements to reconstruct an estimate of a synchronous, instantaneous flow field of the whole measurement set. Temporal information is retained through the linear stochastic estimation (LSE) technique. The technique is described, applied, and validated with a simplified combustor and fuel swirl nozzles (FSN) geometry flow for which three-component, three-dimensional (3C3D) flow information is available. Using the 3C3D dataset, multiple virtual “planes” may be extracted to emulate single planar particle image velocimetry (PIV) measurements and produce the correlations required for LSE. In this example, multiple parallel planes are synchronized with a single perpendicular plane that intersects each of them. As the underlying dataset is known, it therefore can be directly compared to the estimated velocity field for validation purposes. The work shows that when the input time-resolved planar velocity measurements are first proper orthogonal decomposition (POD) filtered, high correlation between the estimations and the validation velocity volumes are possible. This results in estimated full volume velocity distributions, which are available at the same time instance as the input field—i.e., a time-resolved velocity estimation at the frequency of the single input plane. While 3C3D information is used in the presented work, this is necessary only for validation; in true application, planar technique would be used. The study concludes that provided the number of sensors used for input LSE exceeds the number of POD modes used for prefiltering, it is possible to achieve correlation greater than 99%.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101005-101005-10. doi:10.1115/1.4044283.

In multiple stage centrifugal pumps, balance pistons, often comprising a grooved annular seal, equilibrate the full pressure rise across the pump. Grooves in the stator break the evolution of fluid swirl and increase mechanical energy dissipation; hence, a grooved seal offers a lesser leakage and lower cross-coupled stiffness than a similar size uniform clearance seal. To date, bulk-flow modelbulk-flow models (BFMs) expediently predict leakage and rotor dynamic force coefficients of grooved seals; however, they lack accuracy for any other geometry besides rectangular. Note that scalloped and triangular (serrated) groove seals are not uncommon. In these cases, computational fluid dynamics (CFD) models seals of complex shape to produce leakage and force coefficients. Alas, CFD is not yet ready for routine engineer practice. Hence, an intermediate procedure presently takes an accurate two-dimensional (2D) CFD model of a smaller flow region, namely a single groove and adjacent land, to produce stator and rotor surface wall friction factors, expressed as functions of the Reynolds numbers, for integration into an existing BFM and ready prediction of seal leakage and force coefficients. The selected groove-land section is well within the seal length and far away from the effects of the inlet condition. The analysis takes three water lubricated seals with distinct groove shapes: rectangular, scalloped, and triangular. Each seal, with length/diameter L/D = 0.4, has 44 grooves of shallow depth dg ∼ clearance Cr and operates at a rotor speed equal to 5,588 rpm (78 m/s surface speed) and with a pressure drop of 14.9 MPa. The method validity is asserted when 2D (single groove-land) and three-dimensional (3D) (whole seal) predictions for pressure and velocity fields are compared against each other. The CFD predictions, 2D and 3D, show that the triangular groove seal has the largest leakage, 41% greater than the rectangular groove seal does, albeit producing the smallest cross-coupled stiffnesses and whirl frequency ratio (WFR). On the other hand, the triangular groove seal has the largest direct stiffness and damping coefficients. The scalloped groove seal shows similar rotordynamic force coefficients as the rectangular groove seal but leaks 13% more. For the three seal groove types, the modified BFM predicts leakage that is less than 6% away from that delivered by CFD, whereas the seal stiffnesses (both direct and cross-coupled) differ by 13%, the direct damping coefficients by 18%, and the added mass coefficients are within 30%. The procedure introduced extends the applicability of a BFM to predict the dynamic performance of grooved seals with distinctive shapes.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101006-101006-10. doi:10.1115/1.4044238.

An industrial gas turbine can run on a wide variety of fuels to produce power. Depending on the fuel composition and resulting properties, specifically the hydrogen–carbon ratio, the available output power, operability, and emissions of the engine can vary significantly. This study is an examination of how different fuels can affect the output characteristics of Solar Turbines Incorporated industrial engines and highlights the benefits of using fuels with higher hydrogen–carbon ratios including higher power, higher efficiency, and lower carbon emissions. This study also highlights critical combustion operability issues that need to be considered such as auto-ignition, flashback, blowout, and combustion instabilities that become more prominent when varying the hydrogen–carbon ratio significantly. Our intent is to provide a clear and concise reference to edify the reader examining attributes of fuels with different properties and how natural gas is superior to other fossil fuels with lower hydrogen carbon ratios in terms of carbon emissions, power, and efficiency.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101007-101007-9. doi:10.1115/1.4044284.

Gas labyrinth seals (LS) restrict secondary flows (leakage) in turbomachinery and their impact on the efficiency and rotordynamic stability of high-pressure compressors and steam turbines can hardly be overstated. Among seal types, the interlocking labyrinth seal (ILS), having teeth on both the rotor and the stator, is able to reduce leakage up to 30% compared to other LSs with either all teeth on the rotor (TOR) or all teeth on the stator. This paper introduces a revamped facility to test gas seals for their rotordynamic performance and presents measurements of the leakage and cavity pressures in a five teeth ILS. The seal with overall length/diameter L/D = 0.3 and small tip clearance Cr/D = 0.00133 is supplied with air at T = 298 K and increasing inlet pressure Pin = 0.3–1.3 MPa, while the exit pressure/inlet pressure ratio PR = Pout/Pin is set to range from 0.3 to 0.8. The rotor speed varies from null to 10 krpm (79 m/s max. surface speed). During the tests, instrumentation records the seal mass flow (m˙) and static pressure in each cavity. In parallel, a bulk-flow model (BFM) and a computational fluid dynamics (CFD) analysis predict the flow field and deliver the same performance characteristics, namely leakage and cavity pressures. Both measurements and predictions agree closely (within 5%) and demonstrate that the seal mass flow rate is independent of rotor speed. A modified flow factor Φ¯=m˙T/(PinD1PR2) characterizes best the seal mass flow with a unique magnitude for all pressure conditions, Pin and PR.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101008-101008-11. doi:10.1115/1.4044205.

Students from Princeton University partnered with students from the American University in Cairo in a three-week intensive hands-on field experience in Egypt. The project was to assemble, install, and test a wind mill-driven pump used for irrigation and to survey communities across Egypt in the Delta and Red Sea coast to assess water needs in these communities. The course offered a perspective on sustainable development in Egypt followed by water and energy resource challenges in Egypt's diverse geographic areas. Students assembled a wind pump and installed it at the American University in Cairo for testing prior to installation at El Heiz, a desert oasis community in the Western Desert. The students were selected from diverse backgrounds in Mechanical and Aerospace Engineering, Civil and Environmental Engineering, Computer Engineering, and Operations Research and Financial Engineering, and learned the value of having diverse teams address engineering problems in a truly global context. This paper presents the case study including lessons learned in implementation of this experiential learning field project.

Commentary by Dr. Valentin Fuster
J. Eng. Gas Turbines Power. 2019;141(10):101009-101009-8. doi:10.1115/1.4044230.

The characterization and mitigation of thermoacoustic combustion instabilities in gas turbine engines are necessary to reduce pollutant emissions, premature wear, and component failure associated with unstable flames. Fuel staging, a technique in which the fuel flow to a multinozzle combustor is unevenly distributed between the nozzles, has been shown to mitigate the intensity of self-excited combustion instabilities in multiple nozzle combustors. In our previous work, we hypothesized that staging suppresses instability through a phase-cancelation effect in which the heat release rate from the staged nozzle oscillates out of phase with that of the other nozzles, leading to destructive interference that suppresses the instability. This previous theory, however, was based on chemiluminescence imaging, which is a line-of-sight integrated technique. In this work, we use high-speed laser-induced fluorescence to further investigate instability suppression in two staging configurations: center-nozzle and outer-nozzle staging. An edge-tracking algorithm is used to compute local flame edge displacement as a function of time, allowing instability-driven edge oscillation phase coherence and other instantaneous flame dynamics to be spectrally and spatially resolved. Analysis of flame edge oscillations shows the presence of convecting coherent fluctuations of the flame edge caused by periodic vortex shedding. When the system is unstable, these two flame edges oscillate together as a result of high-intensity longitudinal-mode acoustic oscillations in the combustor that drive periodic vortex shedding at each of the nozzle exits. In the stable cases, however, the phase between the oscillations of the center and outer flame edges is greater than 90 deg (∼114 deg), suggesting that the phase-cancelation hypothesis may be valid. This analysis allows a better understanding of the instantaneous flame dynamics behind flame edge oscillation phase offset and fuel staging-based instability suppression.

Commentary by Dr. Valentin Fuster


J. Eng. Gas Turbines Power. 2019;141(10):107001-107001-1. doi:10.1115/1.4044050.

Equation (4) in the original paper contains errors. The correct equation is given as follows: Display Formula


Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In