The iterative algorithm of design variables for structural topology optimization is derived by using variable density approach and Finite Element Method. A coupled model of bent-bar-frame piston is built considering the contact between piston and cylinder, piston and piston pin, piston pin and connecting rod. Based on this model, the deformation and stress of piston are analyzed under each of mechanical or thermal loading. Taking structural weight as the objective function of optimization, three desired regions of piston are optimized by using variable density approach in commercial FEA software HYPERMESH and ANSYS. Finally, the deformation and temperature of the optimized model are compared with prototype by using the same loading and boundary conditions. The results show that the weight of piston is reduced by 12.5% while meeting the required specifications.
- Dynamic Systems and Control Division
Structure Analysis and Topology Optimization of a Bent-Bar-Frame Piston Based on the Variable Density Approach
Zhao, J, Du, F, & Yao, W. "Structure Analysis and Topology Optimization of a Bent-Bar-Frame Piston Based on the Variable Density Approach." Proceedings of the ASME 2014 Dynamic Systems and Control Conference. Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing. San Antonio, Texas, USA. October 22–24, 2014. V002T30A002. ASME. https://doi.org/10.1115/DSCC2014-6118
Download citation file: