The paper has presented a study of cutting forces about dynamic stability of milling machine tools. For that has required the analysis of dynamic machining system (DMS), represented by the interaction between elastic structure of machine tool and cutting process. The cutting force occurred during cutting process is dependent by a certain factors as thickness cut, physics-mechanics properties of workpiece, geometry of shaped edge tool, etc. An important factor, which has direct influenced about DMS, is present of vibration, in special at chatter frequency due to real perturbation and damages of DMS. The magnitude of cutting force depends largely on the tool-work engagement and depth of cut. The dynamic installation has used for study of milling cutting process assured the acquisition of vibration and cutting force on each three axes of milling machine tool. The calculus and interpretation of dynamic tests had done by MATLAB R14.v7.01 Program. Dynamic tests have been more that 150 recordings, by variation of cutting depth for each spindle speeds of machine until occurring chatter. It had used for testing four milling cutters with different geometric parameters and differential pitch of cutter. These dynamic tests are emphasizing the direct influences of cutting forces about dynamic machining system. Thus, by reducing, the magnitude of cutting forces due to suppressing the vibrations and implicit enhanced the dynamic stability of milling machine and quality of machining workpiece.

This content is only available via PDF.
You do not currently have access to this content.