In this paper the boundary layer flow over a flat plat with slip flow and constant heat flux surface condition is studied. Because the plate surface temperature varies along the x direction, the momentum and energy equations are coupled due to the presence of the temperature gradient along the plate surface. This coupling, which is due to the presence of the thermal jump term in Maxwell slip condition, renders the momentum and energy equations non similar. As a preliminary study, this paper ignores this coupling due to thermal jump condition so that the self-similar nature of the equations is preserved. Even this simplified problem for the case of a constant heat flux boundary condition has remained unexplored in the literature and was therefore chosen for study in this paper. For the hydrodynamic boundary layer, velocity and shear stress distributions are presented for a range of values of the parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the molecules reflected diffusively at the surface. As the slip parameter increases, the slip velocity increases and the wall shear stress decreases. These results confirm the conclusions reached in other recent studies. The energy equation is solved to determine the temperature distribution in the thermal boundary layer for a range of values for both the slip parameter as well as the fluid Prandtl number. The increase in Prandtl number and/or the slip parameter reduces the dimensionless surface temperature. The actual surface temperature at any location of x is a function of the local Knudsen number, the local Reynolds number, the momentum accommodation coefficient, Prandtl number, other flow properties, and the applied heat flux.
Skip Nav Destination
Close
Sign In or Register for Account
2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems
June 3–5, 2008
Clear Water Bay, Kowloon, Hong Kong
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4294-0
PROCEEDINGS PAPER
Hydrodynamic and Thermal Boundary Layers Over a Flat Plate With Slip Flow and Constant Surface Heat Flux
Abdul Aziz
Abdul Aziz
Gonzaga University, Spokane, WA
Search for other works by this author on:
Abdul Aziz
Gonzaga University, Spokane, WA
Paper No:
MicroNano2008-70041, pp. 369-374; 6 pages
Published Online:
June 12, 2009
Citation
Aziz, A. "Hydrodynamic and Thermal Boundary Layers Over a Flat Plate With Slip Flow and Constant Surface Heat Flux." Proceedings of the 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. 2008 Second International Conference on Integration and Commercialization of Micro and Nanosystems. Clear Water Bay, Kowloon, Hong Kong. June 3–5, 2008. pp. 369-374. ASME. https://doi.org/10.1115/MicroNano2008-70041
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
16
Views
0
Citations
Related Proceedings Papers
Related Articles
Asymmetrical Heating in Rarefied Flows Through Circular Microchannels
J. Heat Transfer (September,2014)
Gaseous Slip Flow Mixed Convection in Vertical Microducts With Constant Axial Energy Input
J. Heat Transfer (March,2014)
Heat Transfer Characteristics of Gaseous Slip Flow in Concentric Micro-Annular Tubes
J. Heat Transfer (July,2011)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Finite Element Solution of Natural Convection Flow of a Nanofluid along a Vertical Flat Plate with Streamwise Sinusoidal Surface Temperature
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
Application of Universal Functions
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine