Abstract

The usage of low melting temperature alloys (LMAs) as thermal interface materials (TIMs) has attracted more and more attention for their high thermal conductivity. However, the wettability between liquid metal and ordinary metal surface was poor, which results in high thermal interface resistance. The thermal and physical properties of LMAs can be modified by adding nano or micro particles. In this study, the room temperature liquid metal (gallium, indium and tin eutectic) was used as TIM and its properties were modified by mixing magnetic nickel particles. Further, the effects of magnetic field application on the thermal performance of modified LMAs were evaluated by steady state method with specially designed sample holder. Results showed that the thermal conductivity of liquid metal mixed with nickel particle increased from 27.33 W/(m · K) to 33.33 W/(m · K) with the application of magnetic field.

This content is only available via PDF.
You do not currently have access to this content.