A parametric model for foam-like materials is proposed and its correlation with experimental results is analyzed. The class of foam-like materials is assumed to be described by an isotropic elastic potential based on a general model proposed by Ogden. The class is parametrized using the relative mass density of the material. Functional relations between material parameters and the relative mass density are obtained from experimental data. A simple application problem, namely the optimization of a foam for maximum energy absorption under homogeneous compression, is formulated and solved numerically. [S0021-8936(00)02802-6]

1.
Ashby
,
M. F.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14A
, pp.
1755
1769
.
2.
Maiti
,
S. K.
,
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1984
, “
Deformation and Energy Absorption Diagrams for Cellular Solids
,”
Acta Metall.
,
32
, No.
11
, pp.
1963
1975
.
3.
Gibson, L. J., and Ashby, M. F., 1997, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK.
4.
Blatz
,
P. J.
, and
Ko
,
W. L.
,
1962
, “
Application of Finite Elastic Theory to the Deformation of Rubbery Materials
,”
Trans. Soc. Rheol.
,
VI
, pp.
223
251
.
5.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
328
, pp.
567
583
.
6.
Ball
,
J. M.
,
1977
, “
Convexity Conditions and Existence Theorems in Nonlinear Elasticity
,”
Arch. Ration. Mech. Anal.
,
63
, pp.
337
403
.
7.
Dacorogna, B., 1989, Direct Methods in the Calculus of Variations, Springer-Verlag, New York.
8.
Ball
,
J. M.
, and
Murat
,
F.
,
1984
, “
W1,p-quasiconvexity and Variational Problems for Multiple Integrals
,”
J. Funct. Anal.
,
58
, pp.
225
253
.
9.
Horgan
,
C. O.
,
1996
, “
Remarks on Ellipticity for the Generalized Blatz-Ko Constitutive Model for a Compressible Nonlinearly Elastic Solid
,”
J. Elast.
,
42
, pp.
165
176
.
10.
Warren
,
W. E.
, and
Kraynik
,
A. M.
,
1997
, “
Linear Elastic Behavior of a Low-Density Kelvin Foam With Open Cells
,”
ASME J. Appl. Mech.
,
64
, pp.
787
794
.
11.
El-Ratal
,
W. H.
, and
Mallick
,
P. K.
,
1996
, “
Elastic Response of Flexible Polyurethane Foams in Uniaxial Tension
,”
J. Eng. Mater. Technol.
,
118
, pp.
157
161
.
12.
Twizell
,
E. H.
, and
Ogden
,
R. W.
,
1983
, “
Nonlinear Optimization of the Material Constants in Ogden’s Stress-Deformation Function for Incompressible Isotropic Elastic Materials
,”
J. Aust. Math. Soc. B, Appl. Math.
,
24
, pp.
424
434
.
13.
Lakes
,
R.
,
Rosakis
,
P.
, and
Ruina
,
A.
,
1993
, “
Microbuckling Instability in Elastomeric Cellular Solids
,”
J. Mater. Sci.
,
28
, No.
17
, pp.
4667
4672
.
14.
Abeyaratne
,
R.
, and
Triantafyllidis
,
N.
,
1984
, “
An Investigation of Localization in a Porous Elastic Material Using Homogenization Theory
,”
ASME J. Appl. Mech.
,
51
, No.
3
, pp.
481
486
.
15.
Bendso̸e
,
M. P.
,
Guedes
,
J. M.
,
Haber
,
R. B.
,
Pedersen
,
P.
, and
Taylor
,
J. E.
,
1994
, “
An Analytical Model to Predict Optimal Properties in the Context of Optimal Structural Design
,”
ASME J. Appl. Mech.
,
61
, pp.
930
937
.
You do not currently have access to this content.