In this paper, we present a simple and accurate model for the normal force-displacement (NFD) relation for contacting spherical particles, accounting for the effects of plastic deformation. This NFD model, based on the formalism of the continuum theory of elastoplasticity, is to be used in granular flow simulations involving thousands of particles; the efficiency of the model is thus a crucial property. The accuracy of the model allows for an accurate prediction of the contact force level in the plastic regime. In addition to being more accurate than previously proposed NFD models, the proposed NFD model also leads to more accurate coefficient of restitution that is a function of the approaching velocity of two particles in collision. The novelty of the present NFD model is the additive decomposition of the contact-area radius, and the correction of the curvature of the particles at the contact point due to plastic flow. The accuracy of the proposed model is validated against nonlinear finite element results involving plastic flow in both loading and unloading conditions. [S0021-8936(00)03102-0]

1.
Cundall
,
P.
, and
Strack
,
O.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Ge´otech.
,
29
, No.
1
, pp.
47
65
.
2.
Vu-Quoc, L., Zhang, X., and Walton, O. R., 2000, “A 3-D Discrete Element Method for Dry Granular Flows of Ellipsoidal Particles,” Comput. Methods Appl. Mech. Eng., invited paper for the special issue on Dynamics of Contact/Impact Problems, to appear.
3.
Hertz
,
H.
,
1882
, “
U¨ber die Beru¨hrung fester elastischer Ko¨rper (On the Contact of Elastic Solids)
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
4.
Johnson, K. L., 1985, Contact Mechanics, 2nd Ed., Cambridge University Press, New York.
5.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
, pp.
327
344
.
6.
Shih
,
C. W.
,
Schlein
,
W. S.
, and
Li
,
J. C. M.
,
1992
, “
Photoelastic and Finite Element Analysis of Different Size Spheres in Contact
,”
J. Mater. Res.
,
7
, No.
4
, pp.
1011
1017
.
7.
Vu-Quoc, L., and Lesburg, L., 2000, “Contact Force-Displacement Relations for Spherical Particles Accounting for Plastic Deformation,” Int. J. Solids Struct., submitted for publication.
8.
Dobry
,
R.
,
Petrakis
,
E.
, and
Seridi
,
A.
,
1991
, “
General Model for Contact Law Between Two Rough Spheres
,”
J. Eng. Mech.
,
117
, No.
6
, pp.
1365
1381
.
9.
Walton
,
O. R.
, and
Braun
,
R. L.
,
1986
, “
Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks
,”
J. Rheol.
,
30
, No.
5
, pp.
949
980
.
10.
Goldsmith, W., 1960, Impact: The Theory and Physical Behavior of Colliding Solids, Edward Arnold, London.
11.
Kangur
,
K. F.
, and
Kleis
,
I. R.
,
1988
, “
Experimental and Theoretical Determination of the Coefficient of Velocity Restitution Upon Impact
,”
Mech. Solids
,
23
, No.
5
, pp.
182
185
.
12.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
, pp.
383
386
.
13.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J.
, and
Poschel
,
T.
,
1996
, “
Model for Collisions on Granular Gases
,”
Phys. Rev. E
,
53
, No.
5
, pp.
5382
5392
.
14.
Vu-Quoc, L., Lesburg, L., and Zhang, X., 1999, “A Tangential Force-Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation,” J. Mech. Phys. Solids, submitted for publication.
15.
Davies
,
R. M.
,
1949
, “
The Determination of Static and Dynamic Yield Stresses Using a Steel Ball
,”
Proc. R. Soc. London, Ser. A
,
197
, pp.
416
432
.
16.
Vu-Quoc
,
L.
, and
Zhang
,
X.
,
1999
, “
An Elasto-Plastic Contact Force-Displacement Model in the Normal Direction: Displacement-Driven Version
,”
Proc. R. Soc. London, Ser. A
,
455
, No.
1991
, pp.
4013
4044
.
17.
Zhang, X., and Vu-Quoc, L., 2000, “A Method to Extract the Mechanical Properties of Particles in Collision Based on a New Elasto-Plastic Normal Force-Displacement Model,” Int. J. Plast., submitted for publication.
18.
LoCurto
,
G. J.
,
Zhang
,
X.
,
Zakirov
,
V.
,
Bucklin
,
R. A.
,
Vu-Quoc
,
L.
,
Hanes
,
D. M.
, and
Walton
,
O. R.
,
1997
, “
Soybean Impacts: Experiments and Dynamic Simulations
,”
Trans. Am. Soc. Agr. Eng. (ASAE)
,
40
, No.
3
, pp.
789
794
.
19.
Vemuri
,
B. C.
,
Chen
,
L.
,
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Walton
,
O. R.
,
1998
, “
Efficient and Accurate Collision Detection for Granular Flow Simulation
,”
Graph. Models Image Process.
,
60
, No.
6
, pp.
403
422
.
20.
Vu-Quoc
,
L.
, and
Zhang
,
X.
,
1999
, “
An Accurate and Efficient Tangential Force-Displacment Model for Elastic-Frictional Contact in Particle-Flow Simulations
,”
Mech. Mater.
,
31
, pp.
235
269
.
21.
Zhang
,
X.
, and
Vu-Quoc
,
L.
,
2000
, “
Simulation of Chute Flow of Soybeans Using an Improved Tangential Force-Displacement Model
,”
Mech. Mater.
,
32
, No.
2
, pp.
115
129
.
You do not currently have access to this content.