In view of the near-tip constraint effect imposed by the geometry and loading configuration, a creep fracture analysis based on C* only is generally not sufficient. This paper presents a formulation of higher-order crack-tip fields in steady power-law creeping solids which can be derived from an asymptotic development of near-tip fields analogous to that of Sharma and Aravas and Yang et al. for elastoplastic bodies. The higher-order fields are controlled by a parameter named A2*, similar as in elastoplasticity, and a second loading parameter, σ. By means of the scaling properties for power-law materials, it is shown that A2* for a flat test specimen is independent of the loading level. Finally, we carry out small-strain finite element analyses of creep in single-edge notched tension, centered crack panel under tension, and single-edge notched bending specimens in order to determine the corresponding values of A2* for mode I cracks under plane-strain conditions. [S0021-8936(00)01202-2]

1.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
, pp.
111
114
.
2.
Li
,
Y.
, and
Wang
,
Z.
,
1986
, “
Higher Order Asymptotic Field of Tensile Plane Strain Nonlinear Crack Problem
,”
Sci. Sin. (Series A)
,
29
, pp.
941
955
.
3.
Betego´n
,
C.
, and
Hancock
,
J. W.
,
1991
, “
Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
,
58
, pp.
104
110
.
4.
D’Dowd
,
N. P.
, and
Shih
,
C. F.
,
1991
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter—I. Structures of Fields
,”
J. Mech. Phys. Solids
,
39
, pp.
989
1015
.
5.
Parks, D. M., 1992, “Advances in Characterization of Elastic-Plastic Crack-Tip Fields,” Topics in Fracture and Fatigue, A. S. Argon, ed., Springer-Verlag, New York, pp. 59–98.
6.
D’Dowd
,
N. P.
,
1995
, “
Application of Two-Parameter Approaches in Elastic-Plastic Fracture Mechanics
,”
Eng. Fract. Mech.
,
52
, No.
3
, pp.
445
465
.
7.
Sharma
,
S. M.
, and
Aravas
,
N.
,
1991
, “
Determination of Higher-Order Terms in Asymptotic Elastoplastic Crack-Tip Solutions
,”
J. Mech. Phys. Solids
,
39
, pp.
1043
1072
.
8.
Hutchinson
,
J. W.
,
1968
, “
Plastic Stress and Strain Fields at a Crack Tip
,”
J. Mech. Phys. Solids
,
16
, pp.
337
347
.
9.
Rice
,
J. R.
, and
Rosengren
,
G. F.
,
1968
, “
Plane Strain Deformation near a Crack Tip in a Power Law Hardening Materials
,”
J. Mech. Phys. Solids
,
16
, pp.
1
12
.
10.
Shih, C. F., 1983, “Tables of HRR Singular Field Quantities,” Report MRL E-147, Materials Research Laboratory, Brown University, Providence, RI.
11.
Sharma, S. M., 1997, private communication.
12.
Xia
,
L.
,
Wang
,
T. C.
, and
Shih
,
C. F.
,
1993
, “
Higher-Order Analysis of Crack Tip Fields in Elastic Power-Law Hardening Materials
,”
J. Mech. Phys. Solids
,
41
, No.
4
, pp.
665
687
.
13.
Yang
,
S.
,
Chao
,
Y. J.
, and
Sutton
,
M. A.
,
1993
, “
Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material
,”
Eng. Fract. Mech.
,
45
, pp.
1
20
.
14.
Nikishkov
,
G. P.
,
Bru¨ckner-Foit
,
A.
, and
Munz
,
D.
,
1995
, “
Calculation of the Second Fracture Parameter for Finite Cracked Bodies Using a Three-Term Elastic-Plastic Asymptotic Expansion
,”
Eng. Fract. Mech.
,
52
, No.
4
, pp.
685
701
.
15.
Riedel, H., and Rice, J. R., 1980, “Tensile Cracks in Creeping Solids,” ASTM-STP-700, ASTM, Philadelphia, pp. 112–130.
16.
Sharma, S. M., and Aravas, N., 1995, “Two-Parameter Characterization of Crack Tip Fields in Edge-Cracked Geometries: Plasticity and Creep Solutions,” ASTM-STP-1220, ASTM Philadelphia, pp. 309–327.
17.
Riedel, H., 1987, Fracture at High Temperatures (Materials Research and Engineering Series), Springer-Verlag, New York.
18.
Chao, Y. J., and Zhang, L., 1997, “Tables of Plane Strain Crack Tip Fields: HRR and Higher Order Terms,” ME-Report 97-1, University of South Carolina.
19.
Ilyushin
,
A. A.
,
1946
,
Prikl. Mat. Mekh.
,
10
, p.
347
347
.
20.
Chao
,
Y. J.
,
Yang
,
S.
, and
Sutton
,
M. A.
,
1994
, “
On The Fracture of Solids Characterized by One or Two Parameters: Theory and Practice
,”
J. Mech. Phys. Solids
,
42
, pp.
629
647
.
21.
Chao
,
Y. J.
, and
Zhu
,
X. K.
,
1998
, “
J-A2 Characterization of Crack-Tip Fields: Extent of J-A2 Dominance and Size Requirements
,”
Int. J. Fract.
,
89
, pp.
285
307
.
22.
Kumar, V., German, M. D., and Shih, C. F., 1981, “An Engineering Approach for Elastic-Plastic Fracture Analysis,” Report NP-1931 on Project 1237-1 for Electric Power Research Institute, Palo Alto, CA.
23.
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
Fully Plastic Crack problems, Part 1: Solutions by a Penalty Method
,”
ASME J. Appl. Mech.
,
51
, pp.
48
56
.
24.
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
Fully Plastic Crack problems, Part 2: Application of Consistency Checks
,”
ASME J. Appl. Mech.
,
51
, pp.
57
64
.
25.
Parks, D. M., 1999, private communication.
You do not currently have access to this content.