The Lyapunov exponents and moment Lyapunov exponents of a near-nilpotent system under stochastic parametric excitation are studied. The system considered is the linearized system of a two-dimensional nonlinear system exhibiting a pitchfork bifurcation. The effect of stochastic perturbation in the vicinity of static pitchfork bifurcation is investigated. Approximate analytical results of Lyapunov exponent are obtained. The eigenvalue problem for the moment Lyapunov exponent is converted to a two-point boundary value problem, which is solved numerically by the method of relaxation.

1.
Horsthemke, W., and Lefever, R., 1984, Noise-Induced Transitions, Springer-Verlag, Berlin.
2.
Baxendale, P. H., 1991, “Invariant Measure for Nonlinear Stochastic Differential Equations,” Lyapunov Exponents (Lecture Notes in Mathematics, 1486), L. Arnold, H. Crauel, and J.-P. Eckmann, eds., Springer-Verlag, Berlin, pp. 123–140.
3.
Arnold
,
L.
,
1984
, “
A Formula Connecting Sample and Moment Stability of Linear Stochastic Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
44
, No.
4
, pp.
793
801
.
4.
Arnold, L., 1998, Random Dynamical Systems, Springer-Verlag, Berlin, Chapter 9.
5.
Khasminskii
,
R.
, and
Moshchuk
,
N.
,
1998
, “
Moment Lyapunov Exponent and Stability Index for Linear Conservative System With Small Random Perturbation
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
58
, No.
1
, pp.
245
256
.
6.
Arnold
,
L.
,
Doyle
,
M. M.
, and
Sri Namachchivaya
,
N.
,
1997
, “
Small Noise Expansion of Moment Lyapunov Exponents for Two-Dimensional Systems
,”
Dyn. Stab. Syst.
,
12
, No.
3
, pp.
187
211
.
7.
Ariaratnam
,
S. T.
, and
Xie
,
W.-C.
,
1993
, “
Lyapunov Exponents and Stochastic Stability of Two-Dimensional Parametrically Excited Random Systems
,”
Trans. ASME J. Appl. Mech.
,
60
, pp.
677
682
.
8.
Khasminskii
,
R. Z.
,
1967
, “
Necessary and Sufficient Conditions for the Asymptotic Stability of Linear Stochastic Systems
,”
Theor. Probab. Appl.
,
12
, pp.
144
147
(English translation).
9.
Milstein
,
G. N.
,
1996
, “
Evaluation of Moment Lyapunov Exponents for Second Order Stochastic Systems
,”
Random Comput. Dyn.
,
4
, No.
4
, pp.
301
315
.
10.
Ariaratnam
,
S. T.
, and
Xie
,
W.-C.
,
1990
, “
Lyapunov Exponent and Rotation Number of a Two-Dimensional Nilpotent Stochastic System
,”
Dyn. Stab. Syst.
,
5
, No.
1
, pp.
1
9
.
11.
Wedig, W., 1988, “Lyapunov Exponent of Stochastic Systems and Related Bifurcation Problems,” Stochastic Structural Dynamics-Progress in Theory and Applications, S. T. Ariaratnam, G. I. Schue¨ller, and I. Elishakoff, eds., Elsevier, New York, pp. 315–327.
12.
Wedig, W., 1995, “Pitchfork and Hopf Bifurcations in Stochastic Systems—Effective Methods to Calculate Lyapunov Exponents,” Probabilistic Methods in Applied Physics, P. Kre´e and W. Wedig, eds., Springer-Verlag, Berlin, pp. 120–148.
13.
Baxendale
,
P.
, and
Stroock
,
D.
,
1988
, “
Large Deviations and Stochastic Flows of Diffeomorphisms
,”
Prob. Theory Related Fields
,
80
, pp.
169
215
.
14.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed., Cambridge University Press, Cambridge, UK.
You do not currently have access to this content.