The fast Fourier transform (FFT) technique has recently been applied to stress analyses of layered elastic solids, with a great deal of success. However, the existing FFT-based methods are limited to intact solids. This paper explores the possibility of using FFT for stress analyses of layered elastic solids containing cracks. A new numerical approach is developed by combining three-dimensional FFT with the theory of periodic eigenstrain and the conjugate gradient method. The new method is primarily designed for analyzing complex three-dimensional crack patterns in layered solids, such as those produced in thin protective coatings by roughness-induced contact stresses. The method should be particularly advantageous for studying crack propagation in coatings, as it does not require remeshing when the crack shape changes. Numerical examples illustrating advantages as well as limitations of the method are presented. Some unexpected results that were obtained for multiple cracks in a thin coating are discussed.

1.
Schulz
,
H.
, and
Quinto
,
D. T.
,
1999
, “
Technolgical Development of PVD Hard Coatings for Industry
,”
Z. Metallkd.
,
90
, pp.
831
836
.
2.
Suchentrunk
,
R.
,
Fuesser
,
H. J.
,
Staudigl
,
G.
,
Jonke
,
D.
, and
Meyer
,
M.
,
1999
, “
Plasma Surface Engineering—Innovative Processes and Coating Systems for High-Quality Products
,”
Surf. Coat. Technol.
,
112
, pp.
351
357
.
3.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
4.
Polonsky
,
I. A.
,
Chang
,
T. P.
,
Keer
,
L. M.
, and
Sproul
,
W. D.
,
1997
, “
An analysis of the Effect of Hard Coatings on Near-Surface Rolling Contact Fatigue Initiation Induced by Surface Roughness
,”
Wear
,
208
, pp.
204
219
.
5.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence on a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
6.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
2000
, “
A Fast and Accurate Method for Numerical Analysis of Elastic Layered Contacts
,”
ASME J. Tribol.
,
122
, pp.
30
35
.
7.
Chen
,
W. T.
, and
Engel
,
P. A.
,
1972
, “
Impact and Contact Stress Analysis in Multilayer Media
,”
Int. J. Solids Struct.
,
8
, pp.
1257
1281
.
8.
Chiu
,
Y. P.
, and
Hartnett
,
M. J.
,
1983
, “
A Numerical Solution for Layered Solid Contact Problems With Applications to Bearings
,”
ASME J. Lubr. Technol.
,
105
, pp.
585
590
.
9.
Cole
,
S. J.
, and
Sayles
,
R. S.
,
1992
, “
A Numerical Model for the Contact of Layered Elastic Bodies With Real Rough Surfaces
,”
ASME J. Tribol.
,
114
, pp.
334
340
.
10.
Kubo
,
A.
,
Okamoto
,
T.
, and
Kurokawa
,
N.
,
1981
, “
Contact Stress Between Rollers With Surface Irregularity
,”
ASME J. Mech. Des.
,
103
, pp.
492
498
.
11.
Francis
,
H. A.
,
1983
, “
The Accuracy of Plane Strain Models for the Elastic Contact of Three-Dimensional Rough Surface
,”
Wear
,
85
, pp.
239
256
.
12.
Ren
,
N.
, and
Lee
,
S. C.
,
1993
, “
Contact Simulation of Three-Dimensional Rough Surfaces Using Moving Grid Method
,”
ASME J. Tribol.
,
115
, pp.
597
601
.
13.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
,
231
, pp.
206
219
.
14.
Ziegele
,
H.
,
Rebholz
,
C.
,
Voevodin
,
A. A.
,
Leyland
,
A.
,
Rohde
,
S. L.
, and
Matthews
,
A.
,
1997
Studies of the Tribological and Mechanical Properties of Laminated CrC-SiC Coatings Produced by rf and dc Sputtering
,”
Tribol. Int.
,
30
, pp.
845
856
.
15.
Polonsky
,
I. A.
,
Chang
,
T. P.
,
Keer
,
L. M.
, and
Sproul
,
W. D.
,
1998
, “
A Study of Rolling Contact Fatigue of Bearing Steel Coated With PVD TiN Films: Coating Response to Cyclic Contact Stress and Physical Mechanisms Underlying Coating Effect on the Fatigue Life
,”
Wear
,
215
, pp.
191
204
.
16.
Moulinec
,
H.
, and
Suquet
,
P.
,
1994
, “
A Fast Numerical Method for Computing the Linear and Nonlinear Mechanical Properties of Composites
,”
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
,
318
, No.
2
, pp.
1417
1423
.
17.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites with Complex Microstructures
Comput. Methods Appl. Mech. Eng.
,
157
, pp.
69
94
.
18.
Herrmann
,
K. P.
,
Muller
,
W. H.
, and
Neumann
,
S.
,
1999
, “
Linear and Elastic-Plastic Fracture Mechanics Revisited by use of Fourier Transforms—Theory and Application
,”
Comput. Mater. Sci.
,
16
, pp.
186
196
.
19.
Tian
,
H.
, and
Saka
,
N. J.
,
1992
, “
Finite-Element Analysis of Interface Cracking in Sliding Contacts
,”
Wear
,
155
, pp.
163
182
.
20.
Eberhardt
,
A. W.
, and
Kim
,
B. S.
,
1998
, “
Crack Face Friction Effects on Mode II Stress Intensities for a Surface-Cracked Coating in Two-Dimensional Rolling Contact
,”
Tribol. Trans.
,
41
, pp.
35
42
.
21.
Souza
,
R. M.
,
Mustoe
,
G. G. W.
, and
Moore
,
J. J.
,
1999
, “
Finite-Element Modeling of the Stresses and Fracture During the Indentation of Hard Elastic Films on Elastic-Plastic Aluminum Substrates
,”
Thin Solid Films
,
356
, pp.
303
310
.
22.
Lin
,
W.
, and
Keer
,
L. M.
,
1989
, “
Analysis of a Vertical Crack in a Multilayered Medium
,”
ASME J. Appl. Mech.
,
56
, pp.
63
69
.
23.
Lin
,
W.
, and
Keer
,
L. M.
,
1989
, “
Three-Dimensional Analysis of Cracks in Layered Transversely Isotropic Media
,”
Proc. R. Soc. London, Ser. A
,
A424
, pp.
307
322
.
24.
Kuo
,
C. H.
, and
Keer
,
L. M.
,
1995
, “
Three-Dimensional Analysis of Cracking in a Multilayered Composite
,”
ASME J. Appl. Mech.
,
62
, pp.
273
281
.
25.
Mura, T., 1982, Micromechanics of Defects in Solids, Kluwer, Dordrecht.
26.
Murakami
,
Y.
, and
Nemat-Nasser
,
S.
,
1983
, “
Growth and Stability of Interacting Surface Flaws of Arbitrary Shape
,”
Eng. Fract. Mech.
,
17
, pp.
193
210
.
27.
Lee
,
J. C.
,
Farris
,
T. M.
, and
Keer
,
L. M.
,
1987
, “
Stress Intensity Factors for Cracks of Arbitrary Shape Near an Interfacial Boundary
,”
Eng. Fract. Mech.
,
27
, pp.
27
41
.
28.
Hanson
,
M. T.
,
Lin
,
W.
, and
Keer
,
L. M.
,
1989
, “
Three-Dimensional Analysis of Cracking Through the Boundary of a Two-Phase Material
,”
ASME J. Appl. Mech.
,
56
, pp.
850
857
.
29.
Mura
,
T.
,
1964
, “
Periodic Distributions of Dislocations
,”
Proc. R. Soc. London, Ser. A
,
A280
, pp.
528
544
.
30.
Chen
,
W. T.
,
1971
, “
Computation of Stresses and Displacements in a Layered Elastic Medium
,”
Int. J. Eng. Sci.
,
9
, pp.
775
800
.
31.
Gilbert
,
F.
, and
Backus
,
G.
,
1966
, “
Propagator Matrices in Elastic Wave and Vibration Problems
,”
Geophysics
,
31
, pp.
326
332
.
32.
Pan
,
E.
,
1991
, “
An Exact Solution for Transversely Isotropic, Simply Supported and Layered Rectangular Plates
,”
J. Elast.
,
25
, pp.
101
116
.
33.
Moran
,
B.
, and
Shih
,
C. F.
,
1987
, “
Crack Tip and Associated Domain Integrals From Momentum and Energy-Balance
,”
Eng. Fract. Mech.
,
27
, pp.
615
642
.
34.
Murakami, Y., 1986, Stress Intensity Factors Handbook, 1st Ed., Pergamon, Oxford, UK.
35.
Hutchinson
,
J. W.
,
1987
, “
Crack Tip Shielding by Micro-Cracking in Brittle Solids
,”
Acta Metall. Mater.
,
35
, pp.
1605
1619
.
You do not currently have access to this content.