By using Pontryagin’s maximum principle we determine the shape of the lightest rotating rod, stable against buckling. It is shown that the cross-sectional area function is determined from the solution of a nonlinear boundary value problem. Three variational principles for this boundary value problem are formulated and a first integral is constructed. The optimal shape of a rod is determined by numerical integration.

1.
Stodola, A., 1906, Steam Turbines, D. Van Nostrand, New York.
2.
Odeh
,
F.
, and
Tadjbakhsh
,
I.
,
1965
, “
A Nonlinear Eigenvalue Problem for Rotating Rods
,”
Arch. Ration. Mech. Anal.
,
20
, pp.
81
94
.
3.
Bazely
,
N.
, and
Zwahlen
,
B.
,
1968
, “
Remarks on the Bifurcation of Solutions of a Non-linear Eigenvalue problem
,”
Arch. Ration. Mech. Anal.
,
28
, pp.
51
58
.
4.
Parter
,
S. V.
,
1970
, “
Nonlinear Eigenvalue Problems for Some Fourth Order Equations: I—Maximal Solutions
,”
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
,
1
, pp.
437
457
, and “II—Fixed-Point Methods,” 1, pp. 458–478.
5.
Atanackovic
,
T. M.
,
1987
, “
Stability of Rotating Compressed Rod With Imperfections
,”
Math. Proc. Cambridge Philos. Soc.
,
101
, pp.
593
607
.
6.
Atanackovic
,
T. M.
,
1997
, “
On the Rotating Rod With Variable Cross Section
,”
Archive Appl. Mechnics
,
67
, pp.
447
456
.
7.
Cle´ment
,
Ph.
, and
Descloux
,
J.
,
1991
, “
A Variational Approach to a Problem of Rotating Rods
,”
Arch. Ration. Mech. Anal.
,
114
, pp.
1
13
.
8.
Antman, S. S., 1995, Nonlinear Problems of Elasticity, Springer, New York.
9.
Atanackovic, T. M., 1997, Stability Theory of Elastic Rods, World Scientific, Singapore.
10.
Atanackovic
,
T. M.
, and
Simic
,
S. S.
,
1999
, “
On the Optimal Shape of a Pflu¨ger Column
,”
Eur. J. Mech. A/Solids
,
18
, pp.
903
913
.
11.
Clausen
,
T.
,
1851
, “
U¨ber die Form architektonischer Sa¨ulen
,”
Bull. cl, physico math. Acad. St. Pe´tersbourg
,
9
, pp.
369
380
.
12.
Blasius
,
H.
,
1914
, “
Tra¨ger kleinster Durchbiegung und Sta¨be großter Knickfestigkeit bei gegebenem Materialverbrauch
,”
Zeitsch. Math. Physik
,
62
, pp.
182
197
.
13.
Ratzersdorfer, J., 1936, Die Knickfestigkeit von Sta¨ben und Stabwerken, Springer, Wien.
14.
Keller
,
J.
,
1960
, “
The Shape of the Strongest Column
,”
Arch. Ration. Mech. Anal.
,
5
, pp.
275
285
.
15.
Cox
,
S. J.
,
1992
, “
The Shape of the ideal Column
,”
The Mathematical Intelligencer
,
14
, pp.
16
24
.
16.
Chow, S.-N., and Hale, J. K., 1982, Methods of Bifurcation Theory, Springer, New York.
17.
Keller
,
J. B.
, and
Niordson
,
F. I.
,
1966
, “
The Tallest Column
,”
J. Math. Mech.
,
16
, pp.
433
446
.
18.
Cox
,
S. J.
, and
McCarthy
,
C. M.
,
1998
, “
The Shape of the Tallest Column
,”
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
,
29
, pp.
547
554
.
19.
Sage, A. P., and White, C. C., 1977, Optimum System Control, Prentice-Hall, Englewood Cliffs, NJ.
20.
Alekseev, V. M., Tihomirov, V. M., and Fomin, S. V., 1979, Optimal Control, Nauka, Moscow (in Russian).
21.
Pierson
,
B. L.
,
1977
, “
An Optimal Control Approach to Minimum-Weight Vibrating Beam Design
,”
J. Structural Mechanics
,
5
, pp.
147
178
.
22.
Carmichael
,
D.
,
1977
, “
Singular Optimal Control Problems in the Design of Vibrating Structures
,”
J. Sound Vib.
,
53
, pp.
245
253
.
23.
Carmichael, D., 1981, Structural Modelling and Optimization: A General Methodology for Engineering and Control, Ellis Horwood, Chichester, UK.
You do not currently have access to this content.