By using Pontryagin’s maximum principle we determine the shape of the lightest rotating rod, stable against buckling. It is shown that the cross-sectional area function is determined from the solution of a nonlinear boundary value problem. Three variational principles for this boundary value problem are formulated and a first integral is constructed. The optimal shape of a rod is determined by numerical integration.
Issue Section:
Technical Papers
1.
Stodola, A., 1906, Steam Turbines, D. Van Nostrand, New York.
2.
Odeh
, F.
, and Tadjbakhsh
, I.
, 1965
, “A Nonlinear Eigenvalue Problem for Rotating Rods
,” Arch. Ration. Mech. Anal.
, 20
, pp. 81
–94
.3.
Bazely
, N.
, and Zwahlen
, B.
, 1968
, “Remarks on the Bifurcation of Solutions of a Non-linear Eigenvalue problem
,” Arch. Ration. Mech. Anal.
, 28
, pp. 51
–58
.4.
Parter
, S. V.
, 1970
, “Nonlinear Eigenvalue Problems for Some Fourth Order Equations: I—Maximal Solutions
,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
, 1
, pp. 437
–457
, and “II—Fixed-Point Methods,” 1, pp. 458–478.5.
Atanackovic
, T. M.
, 1987
, “Stability of Rotating Compressed Rod With Imperfections
,” Math. Proc. Cambridge Philos. Soc.
, 101
, pp. 593
–607
.6.
Atanackovic
, T. M.
, 1997
, “On the Rotating Rod With Variable Cross Section
,” Archive Appl. Mechnics
, 67
, pp. 447
–456
.7.
Cle´ment
, Ph.
, and Descloux
, J.
, 1991
, “A Variational Approach to a Problem of Rotating Rods
,” Arch. Ration. Mech. Anal.
, 114
, pp. 1
–13
.8.
Antman, S. S., 1995, Nonlinear Problems of Elasticity, Springer, New York.
9.
Atanackovic, T. M., 1997, Stability Theory of Elastic Rods, World Scientific, Singapore.
10.
Atanackovic
, T. M.
, and Simic
, S. S.
, 1999
, “On the Optimal Shape of a Pflu¨ger Column
,” Eur. J. Mech. A/Solids
, 18
, pp. 903
–913
.11.
Clausen
, T.
, 1851
, “U¨ber die Form architektonischer Sa¨ulen
,” Bull. cl, physico math. Acad. St. Pe´tersbourg
, 9
, pp. 369
–380
.12.
Blasius
, H.
, 1914
, “Tra¨ger kleinster Durchbiegung und Sta¨be großter Knickfestigkeit bei gegebenem Materialverbrauch
,” Zeitsch. Math. Physik
, 62
, pp. 182
–197
.13.
Ratzersdorfer, J., 1936, Die Knickfestigkeit von Sta¨ben und Stabwerken, Springer, Wien.
14.
Keller
, J.
, 1960
, “The Shape of the Strongest Column
,” Arch. Ration. Mech. Anal.
, 5
, pp. 275
–285
.15.
Cox
, S. J.
, 1992
, “The Shape of the ideal Column
,” The Mathematical Intelligencer
, 14
, pp. 16
–24
.16.
Chow, S.-N., and Hale, J. K., 1982, Methods of Bifurcation Theory, Springer, New York.
17.
Keller
, J. B.
, and Niordson
, F. I.
, 1966
, “The Tallest Column
,” J. Math. Mech.
, 16
, pp. 433
–446
.18.
Cox
, S. J.
, and McCarthy
, C. M.
, 1998
, “The Shape of the Tallest Column
,” SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
, 29
, pp. 547
–554
.19.
Sage, A. P., and White, C. C., 1977, Optimum System Control, Prentice-Hall, Englewood Cliffs, NJ.
20.
Alekseev, V. M., Tihomirov, V. M., and Fomin, S. V., 1979, Optimal Control, Nauka, Moscow (in Russian).
21.
Pierson
, B. L.
, 1977
, “An Optimal Control Approach to Minimum-Weight Vibrating Beam Design
,” J. Structural Mechanics
, 5
, pp. 147
–178
.22.
Carmichael
, D.
, 1977
, “Singular Optimal Control Problems in the Design of Vibrating Structures
,” J. Sound Vib.
, 53
, pp. 245
–253
.23.
Carmichael, D., 1981, Structural Modelling and Optimization: A General Methodology for Engineering and Control, Ellis Horwood, Chichester, UK.
Copyright © 2001
by ASME
You do not currently have access to this content.