The availability of methods for on-line estimation and identification of structures is crucial for the monitoring and active control of time-varying nonlinear structural systems. Adaptive estimation approaches that have recently appeared in the literature for on-line estimation and identification of hysteretic systems under arbitrary dynamic environments are in general model based. In these approaches, it is assumed that the unknown restoring forces are modeled by nonlinear differential equations (which can represent general nonlinear characteristics, including hysteretic phenomena). The adaptive methods estimate the parameters of the nonlinear differential equations on line. Adaptation of the parameters is done by comparing the prediction of the assumed model to the response measurement, and using the prediction error to change the system parameters. In this paper, a new methodology is presented which is not model based. The new approach solves the problem of estimating/identifying the restoring forces without assuming any model of the restoring forces dynamics, and without postulating any structure on the form of the underlying nonlinear dynamics. The new approach uses the Volterra/Wiener neural networks (VWNN) which are capable of learning input/output nonlinear dynamics, in combination with adaptive filtering and estimation techniques. Simulations and experimental results from a steel structure and from a reinforced-concrete structure illustrate the power and efficiency of the proposed method.

1.
Housner
,
G. W.
,
Bergman
,
L. A.
,
Caughey
,
T. K.
,
Chassiakos
,
A. G.
,
Claus
,
R. O.
,
Masri
,
S. F.
,
Skelton
,
R. E.
,
Soong
,
T. T.
,
Spencer
,
B. F.
, and
Yao
,
J. T. P.
,
1997
, “
Structural Control: Past Present and Future
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
123
, No.
9
, pp.
897
971
.
2.
Caughey
,
T. K.
,
1960
, “
Random Excitation of a System With Bilinear Hysteresis
,”
ASME J. Appl. Mech.
,
27
, pp.
649
652
.
3.
Jennings
,
P. C.
,
1964
, “
Periodic Response of a General Yielding Structure
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
90
, No.
3m2
, pp.
131
166
.
4.
Iwan
,
W. D.
,
1966
, “
A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response
,”
ASME J. Appl. Mech.
,
33
, pp.
893
900
.
5.
Bouc, R., 1967, “Forced Vibration of Mechanical Systems With Hysteresis,” abstract, Proceedings, 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia.
6.
Iwan
,
W. D.
, and
Lutes
,
L. D.
,
1968
, “
Response of the Bilinear Hysteretic System to Stationary Random Excitation
,”
J. Acoust. Soc. Am.
,
43
, No.
3
, pp.
545
552
.
7.
Masri
,
S. F.
,
1975
, “
Forced Vibration of the Damped Bilinear Hysteretic Oscillator
,”
J. Acoust. Soc. Am.
,
57
, No.
1
, pp.
106
113
.
8.
Wen
,
Y. K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
102
, No.
Em2
, pp.
249
263
.
9.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
, No.
2
, pp.
433
447
.
10.
Baber
,
T. T.
, and
Wen
,
Y. K.
,
1981
, “
Random Vibration of Hysteretic Degrading Systems
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
107
, No.
3m6
, pp.
1069
1087
.
11.
Spanos
,
P. D.
,
1981
, “
Stochastic Linearization in Structural Dynamics
,”
Appl. Mech. Rev.
,
34
, No.
1
, pp.
1
8
.
12.
Toussi
,
S.
, and
Yao
,
J. T. P.
,
1983
, “
Hysteretic Identification of Existing Structures
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
109
, No.
5
, pp.
1189
1202
.
13.
Andronikou, A. M., and Bekey, G. A., 1984, “Identification of Hysteretic Systems,” Proc. of the 18th IEEE Conf. on Decision and Control, Dec., pp. 1072–1073.
14.
Spencer
,
B. F.
, and
Bergman
,
L. A.
,
1985
, “
On the Reliability of a Simple Hysteretic System
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
111
, pp.
1502
1514
.
15.
Vinogradov
,
O.
, and
Pivovarov
,
I.
,
1986
, “
Vibrations of a System With Non-Linear Hysteresis
,”
J. Sound Vib.
,
111
, No.
1
, pp.
145
152
.
16.
Iwan
,
W. D.
, and
Cifuentes
,
A. O.
,
1986
, “
A Model for System Identification of Degrading Structures
,”
Jnl Earthquake Engineering and Structural Dynamics
,
14
, No.
6
, pp.
877
890
.
17.
Jayakumar, P., and Beck, J. L., 1987, “System Identification Using Nonlinear Structural Models,” Proceedings, Structural Safety Evaluation Based on System Identification Approaches, Lambracht, Germany, pp. 82–102.
18.
Peng
,
C. Y.
, and
Iwan
,
W. D.
,
1992
, “
An Identification Methodology for a Class of Hysteretic Structures
,”
Earthquake Eng. Struct. Dyn.
,
21
, pp.
695
712
.
19.
Yar
,
M.
, and
Hammond
,
J. K.
,
1987
, “
Modeling and Response of Bilinear Hysteretic Systems
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
113
, pp.
1000
1013
.
20.
Yar
,
M.
, and
Hammond
,
J. K.
,
1987
, “
Parameter Estimation for Hysteretic Systems
,”
J. Sound Vib.
,
117
, No.
1
, pp.
161
172
.
21.
Roberts, J. B., and Spanos, P. D., 1990, Random Vibration and Statistical Linearization, John Wiley and Sons, New York, NY.
22.
Masri
,
S. F.
,
Miller
,
R. K.
,
Traina
,
M.-I.
, and
Caughey
,
T. K.
,
1991
, “
Development of Bearing Friction Models From Experimental Measurements
,”
J. Sound Vib.
,
148
, No.
3
, pp.
455
475
.
23.
Loh
,
C.
, and
Chung
,
S.
,
1993
, “
A Three-Stage Identification Approach for Hysteretic Systems
,”
Earthquake Eng. Struct. Dyn.
,
22
, pp.
129
150
.
24.
Benedettini
,
F.
,
Capecchi
,
D.
, and
Vestroni
,
F.
,
1995
, “
Identification of Hysteretic Oscillators Under Earthquake Loading by Nonparametric Models
,”
J. Eng. Mech.
,
121
, pp.
606
612
.
25.
Chassiakos, A. G., Masri, S. F., Smyth, A., and Anderson, J. C., 1995, “Adaptive Methods for Identification of Hysteretic Structures,” Proceedings American Control Conference, ACC95, Seattle, WA, June, American Automatic Control Council.
26.
Chassiakos
,
A. G.
,
Masri
,
S. F.
,
Smyth
,
A. W.
, and
Caughey
,
T. K.
,
1998
, “
On-Line Identification of Hysteretic Systems
,”
ASME J. Appl. Mech.
,
65
, pp.
194
203
.
27.
Sato
,
T.
, and
Qi
,
K.
,
1998
, “
Adaptive Hinf Filter: Its Applications to Structural Identification
,”
J. Eng. Mech.
124
, No.
11
, pp.
1233
1240
.
28.
Smyth, A. W., Masri, S. F., Chassiakos, A. G., and Caughey, T. K., 1999, “On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems,” J. Eng. Mech. Div., Am. Soc. Civ. Eng., 125, No. 2.
29.
Narendra, K. S., and Annaswamy, A. M., 1989, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ.
30.
Wen
,
Y. K.
,
1989
, “
Methods of Random Vibration for Inelastic Structures
,”
Appl. Mech. Rev.
,
42
, No.
2
, pp.
39
52
.
31.
Kosmatopoulos, E. B., 1999, “Neural Controllers for Output Feedback Control,” IEEE Trans. Autom. Control, submitted for publication.
32.
Goodwin G. C., and Sin K. S., 1984, Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood Cliffs, NJ.
33.
Ioannou
,
P. A.
, and
Datta
,
A.
,
1991
, “
Robust Adaptive Control: A Unified Approach
,”
Proc. IEEE
,
79
, pp.
1736
1768
.
34.
Polycarpou M. M., and Ioannou P. A., 1992, “Neural Networks as On-line Approximators of Nonlinear Systems,” Proc. of the 31st IEEE CDC, Tucson, AZ, IEEE, New York, pp. 7–12.
35.
Masri
,
S. F.
,
Agbabian
,
M. S.
,
Abdel-Ghaffar
,
A. M.
,
Highazy
,
M.
,
Claus
,
R. O.
, and
de Vries
,
M. J.
,
1994
, “
An Experimental Study of Embedded Fiber-Optic Strain Gauges in Concrete Structures
,”
J. Eng. Mech. Div., Am. Soc. Civ. Eng.
,
120
, No.
8
, pp.
1696
1717
.
36.
Kosmatopoulos
,
E. B.
,
Polycarpou
,
M. M.
,
Christodoulou
,
M. A.
, and
Ioannou
,
P. A.
,
1995
, “
High-Order Neural Network Structures for Identification of Dynamical Systems
,”
IEEE Trans. Neural Netw.
,
6
, No.
2
, pp.
422
431
.
You do not currently have access to this content.