In Part I of this series, we have obtained the fundamental solution for a mode II intersonic crack which involves a crack moving uniformly at a velocity between the shear and longitudinal wave speeds while subjected to a pair of concentrated forces suddenly appearing at the crack tip and subsequently acting on the crack faces. The fundamental solution can be used to generate solutions for intersonic crack propagation under arbitrary initial equilibrium fields. In this paper, Part II of this series, we study a mode II crack suddenly stopping after propagating intersonically for a short time. The solution is obtained by superposing the fundamental solution and the auxiliary problem of a static crack emitting dynamic dislocations such that the relative crack face displacement in the fundamental solution is negated ahead of where the crack tip has stopped. We find that, after the crack stops moving, the stress intensity factor rapidly rises to a finite value and then starts to change gradually toward the equilibrium value for a static crack. A most interesting feature is that the static value of stress intensity is reached neither instantaneously like a suddenly stopping subsonic crack nor asymptotically like a suddenly stopping edge dislocation. Rather, the dynamic stress intensity factor changes continuously as the shear and Rayleigh waves catch up with the stopped crack tip from behind, approaches negative infinity when the Rayleigh wave arrives, and then suddenly assumes the equilibrium static value when all the waves have passed by. This study is an important step toward the study of intersonic crack propagation with arbitrary, nonuniform velocities.

1.
Freund
,
L. B.
,
1972
, “
Crack Propagation in an Elastic Solid Subjected to General Loading. I. Constant Rate of Extension
,”
J. Mech. Phys. Solids
,
20
, pp.
129
140
.
2.
Freund, L. B., 1990, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, UK.
3.
Freund
,
L. B.
,
1972
, “
Crack Propagation in an Elastic Solid Subjected to General Loading. II. Nonuniform Rate of Extension
,”
J. Mech. Phys. Solids
,
20
, pp.
141
152
.
4.
Broberg, K. B., 1999, Cracks and Fracture, Academic Press, San Diego, CA.
5.
Fossum
,
A. F.
, and
Freund
,
L. B.
,
1975
, “
Nonuniformly Moving Shear Crack Model of a Shallow Focus Earthquake Mechanism
,”
J. Geophys. Res.
,
80
, pp.
3343
3347
.
6.
Freund
,
L. B.
,
1973
, “
Crack Propagation in an Elastic Solid Subjected to General Loading. III. Stress Wave Loading
,”
J. Mech. Phys. Solids
,
21
, pp.
47
61
.
7.
Kostrov
,
B. V.
,
1975
, “
On the Crack Propagation With Variable Velocity
,”
Int. J. Fract.
,
11
, pp.
47
56
.
8.
Kostrov
,
B. V.
, and
Osaulenko
,
V. I.
,
1976
, “
Crack Propagation at Arbitrary Variable Rate Under the Action of Static Solids
,”
Mech. Solids
,
11
, pp.
76
92
.
9.
Burridge
,
R.
,
1976
, “
An Influence Function for the Intensity Factor in Tensile Fracture
,”
Int. J. Eng. Sci.
,
14
, pp.
725
734
.
10.
Willis, J. R., 1989, “Accelerating Cracks and Related Problems,” Elasticity, Mathematical Methods and Applications, the Ian Sneddon 70th Birthday Volume R. W. Ogden, ed., Ellis Horwood, Chichester, pp. 397–409.
11.
Willis
,
J. R.
,
1992
, “
The Stress Field Near the Tip of an Accelerating Crack
,”
J. Mech. Phys. Solids
,
40
, pp.
1671
1681
.
12.
Rosakis
,
A. J.
,
Samudrala
,
O.
, and
Coker
,
D.
,
1999
, “
Cracks Faster Than the Shear Wave Speed
,”
Science
,
284
, pp.
1337
1340
.
13.
Rosakis
,
A. J.
,
Samudrala
,
O.
, and
Coker
,
D.
,
2000
, “
Intersonic Shear Crack Growth Along Weak Planes
,”
Mater. Res. Innovations
,
3
, pp.
236
243
.
14.
Archuleta
,
R. J.
,
1982
, “
Analysis of Near Source Static and Dynamic Measurements From the 1979 Imperial Valley Earthquake
,”
Bull. Seismol. Soc. Am.
,
72
, pp.
1927
1956
.
15.
Beroza
,
G. C.
, and
Spudich
,
P.
,
1988
, “
Linearized Inversion for Fault Rupture Behavior—Application to the 1984 Morgan-Hill, California, Earthquake
,”
J. Geophys. Res.
,
93
, pp.
6275
6296
.
16.
Wald
,
D. J.
, and
Heaton
,
T. H.
,
1994
, “
Spatial and Temporal Distribution of Slip for the 1992 Landers, California, Earthquake
,”
Bull. Seismol. Soc. Am.
,
84
, pp.
668
691
.
17.
Ellsworth
,
W. L.
, and
Celebi
,
M.
,
1999
, “
Near Field Displacement Time Histories of the M 7.4 Kocaeli (Izimit), Turkey, Earthquake of August 17, 1999
,”
EOS Trans. Am. Geophys. Union
,
80
, No.
46
, p.
F648
F648
.
18.
Freund
,
L. B.
,
1979
, “
The Mechanics of Dynamic Shear crack propagation
,”
J. Geophys. Res.
,
84
, pp.
2199
2209
.
19.
Burridge
,
R.
,
Conn
,
G.
, and
Freund
,
L. B.
,
1979
, “
The Stability of a Plane Strain Shear Crack With Finite Cohesive Force Running at Intersonic Speeds
,”
J. Geophys. Res.
,
84
, pp.
2210
2222
.
20.
Simonov
,
I. V.
,
1983
, “
Behavior of Solutions of Dynamic Problems in the Neighborhood of the Edge of a Cut Moving at Transonic Speed in an Elastic Medium
,”
Mech. Solids
,
18
, pp.
100
106
.
21.
Broberg
,
K. B.
,
1994
, “
Intersonic Bilateral Slip
,”
Geophys. J. Int.
,
119
, pp.
706
714
.
22.
Broberg
,
K. B.
,
1999
, “
Intersonic Crack Propagation in an Orthotropic Material
,”
Int. J. Fract.
,
99
, pp.
1
11
.
23.
Huang
,
Y.
,
Wang
,
W.
,
Liu
,
C.
, and
Rosakis
,
A. J.
,
1999
, “
Analysis of Intersonic Crack Growth in Unidirectional Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
47
, pp.
1893
1916
.
24.
Brock
,
L. M.
,
1977
, “
Two Basic Problems of Plane Crack Extension: A Unified Treatment
,”
Int. J. Eng. Sci.
,
15
, pp.
527
536
.
25.
Gao
,
H.
,
Huang
,
Y.
,
Gumbsch
,
P.
, and
Rosakis
,
A. J.
,
1999
, “
On Radiation-Free Transonic Motion of Cracks and Dislocations
,”
J. Mech. Phys. Solids
,
47
, pp.
1941
1961
.
26.
Andrews
,
D. J.
,
1976
, “
Rupture Velocity of Plane Strain Shear Cracks
,”
J. Geophys. Res.
,
81
, pp.
5679
5687
.
27.
Needleman
,
A.
,
1999
, “
An Analysis of Intersonic Crack Growth Under Shear Loading
,”
ASME J. Appl. Mech.
,
66
, pp.
847
857
.
28.
Yu
,
H. H.
, and
Suo
,
Z.
,
2000
, “
Intersonic Crack Growth on an Interface
,”
Proc. R. Soc. London, Ser. A
,
A456
, pp.
223
246
.
29.
Geubelle
,
P. H.
, and
Kubair
,
D.
,
2001
, “
Intersonic Crack Propagation in Homogeneous Media Under Shear Dominated Loading: Numerical Analysis
,”
J. Mech. Phys. Solids
,
49
, pp.
571
587
.
30.
Abraham
,
F. F.
, and
Gao
,
H.
,
2000
, “
How Fast Can Cracks Propagate?
Phys. Rev. Lett.
,
84
, pp.
3113
3116
.
31.
Gao
,
H.
,
Huang
,
Y.
, and
Abraham
,
F. F.
,
2001
, “
Continuum and Atomistic Studies of Intersonic Crack Propagation
,”
J. Mech. Phys. Solids
,
49
, pp.
2113
2132
.
32.
Huang
,
Y.
, and
Gao
,
H.
,
2001
, “
Intersonic Crack Propagation. I. The Fundamental Solution
,”
ASME J. Appl. Mech.
,
68
, pp.
169
175
.
33.
Freund
,
L. B.
,
1974
, “
The Stress Intensity Factor due to Normal Impact Loading of the Faces of a Crack
,”
Int. J. Eng. Sci.
,
12
, pp.
179
189
.
You do not currently have access to this content.