This work studies mode I crack growth in ceramic/metal functionally graded materials (FGMs) using three-dimensional interface-cohesive elements based upon a new phenomenological cohesive fracture model. The local separation energies and peak tractions for the metal and ceramic constituents govern the cohesive fracture process. The model formulation introduces two cohesive gradation parameters to control the transition of fracture behavior between the constituents. Numerical values of volume fractions for the constituents specified at nodes of the finite element model set the spatial gradation of material properties with standard isoparametric interpolations inside interface elements and background solid elements to define pointwise material property values. The paper describes applications of the cohesive fracture model and computational scheme to analyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B), specimens with material properties characteristic of a TiB/Ti FGM. Young’s modulus and Poisson’s ratio of the background solid material are determined using a self-consistent method (the background material remains linear elastic). The numerical studies demonstrate that the load to cause crack extension in the FGM compares to that for the metal and that crack growth response varies strongly with values of the cohesive gradation parameter for the metal. These results suggest the potential to calibrate the value of this parameter by matching the predicted and measured crack growth response in standard fracture mechanics specimens.

1.
Hirai, T., 1996, “Functionally Gradient Materials,” Materials Science and Technology: Processing of Ceramics, Part 2, R. J. Brook eds., VCH Verlagsgesellschaft mbH, Weinheim, Germany, 17B, pp. 292–341.
2.
Koizumi, M., 1993, “The Concept of FGMs,” Ceramic Transactions: Functionally Graded Materials, J. B. Holt, M. Koizumi, T. Hirai, and Z. Munir, eds., American Ceramic Society, Westerville, OH, 34, pp. 3–10.
3.
Suresh, S., and Mortensen, A., 1998, Functionally Graded Materials, The Institute of Materials, IOM Communications, London.
4.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
104
.
5.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cement Concrete Res
,
6
, pp.
773
782
.
6.
Mosalam
,
K. M.
, and
Paulino
,
G. H.
,
1997
, “
Evolutionary Characteristic Length Method for Smeared Cracking Finite Element Models
,”
Finite Elem. Anal. Design
,
27
, pp.
99
108
.
7.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
8.
Roy
,
Y. A.
, and
Dodds
, Jr.,
R. H.
,
2001
, “
Simulation of Ductile Crack Growth in Thin Aluminum Panels Using 3-D Surface Cohesive Elements
,”
Int. J. Fract.
,
110
, pp.
21
45
.
9.
Finot
,
M.
,
Shen
,
Y.-L.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1994
, “
Micromechanical Modeling of Reinforcement Fracture in Particle-Reinforced Metal-Matrix Composites
,”
Metall. Trans. A
,
25
, pp.
2403
2420
.
10.
Jin
,
Z.-H.
, and
Batra
,
R. C.
,
1996
, “
Some Basic Fracture Mechanics Concepts in Functionally Graded Materials
,”
J. Mech. Phys. Solids
,
44
, pp.
1221
1235
.
11.
Cai
,
H.
, and
Bao
,
G.
,
1998
, “
Crack Bridging in Functionally Graded Coatings
,”
Int. J. Solids Struct.
,
35
, pp.
701
717
.
12.
Williamson
,
R. L.
,
Rabin
,
B. H.
, and
Drake
,
J. T.
,
1993
, “
Finite Element Analysis of Thermal Residual Stresses at Graded Ceramic-Metal Interfaces, Part I: Model Description and Geometrical Effects
,”
J. Appl. Phys.
,
74
, pp.
1310
1320
.
13.
Giannakopoulos
,
A. E.
,
Suresh
,
S.
,
Finot
,
M.
, and
Olsson
,
M.
,
1995
, “
Elastoplastic Analysis of Thermal Cycling: Layered Materials With Compositional Gradients
,”
Acta Metall. Mater.
,
43
, pp.
1335
1354
.
14.
Rose
,
J. H.
,
Ferrante
,
J.
, and
Smith
,
J. R.
,
1981
, “
Universal Binding Energy Curves for Metals and Bimetallic Interfaces
,”
Phys. Rev. Lett.
,
47
, pp.
675
678
.
15.
Siegmund
,
T.
, and
Needleman
,
A.
,
1997
, “
A Numerical Study of Dynamic Crack Growth in Elastic-Viscoplastic Solids
,”
Int. J. Solids Struct.
,
34
, pp.
769
788
.
16.
Ortiz
,
M.
, and
Pandolfi
,
A.
,
1999
, “
Finite-Deformation Irreversible Cohesive Elements for Three-Dimensional Crack-Propagation Analysis
,”
Int. J. Numer. Methods Eng.
,
44
, pp.
1267
1282
.
17.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
40
, pp.
1377
1392
.
18.
Guinea
,
G. V.
,
Elices
,
M.
, and
Planas
,
J.
,
1997
, “
On the Initial Shape of the Softening Function of Cohesive Materials
,”
Int. J. Fract.
,
87
, pp.
139
149
.
19.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
, pp.
2899
2938
.
20.
Kim
,
J.-H.
, and
Paulino
,
G. H.
,
2002
, “
Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
1903
1935
.
21.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley and Sons, New York.
22.
Reiter
,
T.
,
Dvorak
,
G. J.
, and
Tvergaard
,
V.
,
1997
, “
Micromechanical Models for Graded Composite Materials
,”
J. Mech. Phys. Solids
,
45
, pp.
1281
1302
.
23.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
222
.
24.
Nelson, G., and Ezis, A., 1996, “Functionally Graded Material (FGM) Armor in the TiB/Ti system (U),” CERCOM Report, Vista, CA.
25.
Carpenter
,
R. D.
,
Liang
,
W. W.
,
Paulino
,
G. H.
,
Gibeling
,
J. C.
, and
Munir
,
Z. A.
,
1999
, “
Fracture Testing and Analysis of a Layered Functionally Graded Ti/TiB Beam in 3-Point Bending
,”
Mater. Sci. Forum
,
308–311
, pp.
837
842
.
26.
Liang, W. W., 1999, “Finite Element Analysis of Model I Crack Propagation in Layered Functionally Graded Materials,” M.Sc. thesis, University of California, Davis, CA.
27.
Gullerud, A. S., Koppenhoefer, K. C., Roy, A., and Dodds, Jr., R. H., 2000, WARP3D—Release 13.8 Manual, Civil Engineering, Report No. UILU-ENG-95-2012, University of Illinois, Urbana, IL.
You do not currently have access to this content.