The topology optimization of a switched reluctance motor (SRM) excited by magnetic forces is an important issue to minimize the noise and vibration level. In this paper, the magnetic force is computed using the Maxwell stress method and the optimization problem is formulated to minimize the frequency response based on the homogenization design method (HDM). The developed method is applied to the stator of an SRM to minimize the deformation caused by the magnetic harmonic excitation. Numerical simulation shows that this method successfully decreases the vibration level of an SRM.
Issue Section:
Technical Papers
Keywords:
reluctance motors,
stators,
vibrations,
optimisation,
topology,
frequency response,
magnetic forces
1.
Lawrenson
, P. J.
, Stephson
, J. M.
, Blenkinsop
, P. T.
, Corda
, J.
, and Fulton
, N. N.
, 1980
, “Variable Speed Switched Reluctance Motors
,” IEEE Proc. Part B
, 133
(6
), pp. 253
–265
.2.
Cameron
, D. E.
, and Lang
, J. H.
, 1992
, “The Origin and Reduction of Acoustic Noise in Doubly Salient Variable Reluctance Motors
,” IEEE Trans. Ind. Appl.
, 28
(6
), pp. 1250
–1255
.3.
Colby
, R. S.
, Mottier
, F. M.
, and Miller
, T. J. E.
, 1996
, “Vibration Mode and Acoustic Noise in a Four-Phased Switched Reluctance Motor
,” IEEE Trans. Ind. Appl.
, 32
(6
), pp. 1357
–1364
.4.
Wu
, C.
, and Pollock
, C.
, 1995
, “Analysis and Reduction of Vibration and Acoustic Noise in the Switched Reluctance Drive
,” IEEE Trans. Ind. Appl.
, 31
(1
), pp. 91
–98
.5.
Ito
, M.
, Tajima
, F.
, and Kanazawa
, H.
, 1990
, “Evaluation of Force Calculation Methods
,” IEEE Trans. Magn.
, 26
(2
), pp. 1035
–1038
.6.
Hamler
, A.
, Kreca
, B.
, and Hribernik
, B.
, 1992
, “Investigation of the Torque Calculation of a DC PM Motor
,” IEEE Trans. Magn.
, 28
(5
), pp. 2271
–2273
.7.
Bendsøe
, M. P.
, and Kikuchi
, N.
, 1988
, “Generating Optimal Topologies in Structural Design Using a Homogenization Method
,” Comput. Methods Appl. Mech. Eng.
, 71
, pp. 197
–224
.8.
Diaz
, A.
, and Kikuchi
, N.
, 1992
, “Solution to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,” Int. J. Numer. Methods Eng.
, 35
, pp. 1487
–1502
.9.
Ma
, Z. D.
, Kikuchi
, N.
, and Hagiwara
, I.
, 1993
, “Structural Topology and Shape Optimization for a Frequency Response Problem
,” Computational Mech.
, 13
, pp. 157
–174
.10.
Reyner
, G.
, Meunier
, G.
, Imhoff
, J. F.
, and Euxibie
, E.
, 1988
, “Magnetic Forces and Mechanical Behavior of Ferromagnetic Materials. Presentation and Results on the Theoretical Experimental and Numerical Approaches
,” IEEE Trans. Magn.
, 24
(1
), pp. 234
–237
.11.
Pederson
, P.
, 1989
, “On Optimal Orientation of Orthotropic Materials
,” Struct. Optim.
, 1
, pp. 101
–106
.12.
Yoo
, J.
, Kikuchi
, N.
, and Volakis
, J. L.
, 2000
, “Structural Optimization in Magnetic Fields Using the Homogenization Design Method
,” IEEE Trans. Magn.
, 36
(3
), pp. 574
–580
.Copyright © 2002
by ASME
You do not currently have access to this content.