Carbon nanotubes show great promise for applications ranging from nanocomposites, nanoelectronic components, nanosensors, to nanoscale mechanical probes. These materials exhibit very attractive mechanical properties with extraordinarily high stiffness and strength, and are of great interest to researchers from both atomistic and continuum points of view. In this paper, we intend to develop a continuum theory of fracture nucleation in single-walled carbon nanotubes by incorporating interatomic potentials between carbon atoms into a continuum constitutive model for the nanotube wall. In this theory, the fracture nucleation is viewed as a bifurcation instability of a homogeneously deformed nanotube at a critical strain. An eigenvalue problem is set up to determine the onset of fracture, with results in good agreement with those from atomistic studies.

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
,
354
, pp.
56
58
.
2.
Ebbesen
,
T. W.
, and
Ajayan
,
P. M.
,
1992
, “
Large-Scale Synthesis of Carbon Nanotubes
,”
Nature (London)
,
358
, pp.
220
222
.
3.
Thess
,
A.
,
Lee
,
R.
,
Nikolaev
,
P.
,
Dai
,
H. J.
,
Petit
,
P.
,
Rotert
,
J.
,
Xu
,
C. H.
,
Lee
,
Y. H.
,
Kim
,
S. G.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
,
Scuseria
,
G. E.
,
Tomanek
,
D.
,
Fischer
,
J. E.
, and
Smalley
,
R. E.
,
1996
, “
Crystalline Ropes of Metallic Carbon Nanotubes
,”
Science
,
273
, pp.
483
487
.
4.
Robertson
,
D. H.
,
Brenner
,
D. W.
, and
Mintmire
,
J. W.
,
1992
, “
Energetics of Nanoscale Graphitic Tubules
,”
Phys. Rev. B
,
45
, pp.
12592
12595
.
5.
Ruoff
,
R. S.
, and
Lorents
,
D. C.
,
1995
, “
Mechanical and Thermal Properties of Carbon Nanotubes
,”
Carbon
,
33
, pp.
925
930
.
6.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes
,”
Nature (London)
,
381
, pp.
678
680
.
7.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
, pp.
2511
2514
.
8.
Cornwell
,
C. F.
, and
Wille
,
L. T.
,
1997
, “
Elastic Properties of Single-Walled Carbon Nanotubes in Compression
,”
Solid State Commun.
,
101
, pp.
555
558
.
9.
Lu
,
J. P.
,
1997
, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
,
79
, pp.
1297
1300
.
10.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
,
1997
, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
,
277
, pp.
1971
1975
.
11.
Nardelli
,
M. B.
,
Yakobson
,
B. I.
, and
Bernholc
,
J.
,
1998
, “
Brittle and Ductile Behavior in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
81
, pp.
4656
4659
.
12.
Nardelli
,
M. B.
,
Yakobson
,
B. I.
, and
Bernholc
,
J.
,
1998
, “
Mechanism of Strain Release in Carbon Nanotubes
,”
Phys. Rev. B
,
57
, pp.
R4277–R4280
R4277–R4280
.
13.
Yakobson
,
B. I.
,
1998
, “
Mechanical Relaxation and ‘Intramolecular Plasticity’ in Carbon Nanotubes
,”
Appl. Phys. Lett.
,
72
, pp.
918
920
.
14.
Srivastara
,
D.
,
Menon
,
M.
, and
Cho
,
K. J.
,
1999
, “
Nanoplasticity of Single-Wall Nanotubes Under Uniaxial Compression
,”
Appl. Phys. Lett.
,
83
, pp.
2973
2976
.
15.
Lourie
,
O.
, and
Wagner
,
H. D.
,
1998
, “
Transmission Electron Microscopy Observations of Fracture of Single-Wall Carbon Nanotubes Under Axial Tension
,”
Appl. Phys. Lett.
,
73
, pp.
3527
3529
.
16.
Yakobson
,
B. I.
, and
Smalley
,
R. E.
,
1997
, “
Fullerene Nanotubes: C-1000000 and Beyond
,”
Am. Sci.
,
85
, pp.
324
337
.
17.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
, pp.
6991
7000
.
18.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471
.
19.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1997
, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
,
8
, pp.
341
348
.
20.
Friesecke
,
G.
, and
James
,
R. D.
,
1999
, “
A Scheme for the Passage From Atomic to Continuum Theory for Thin Films, Nanotubes and Nanorods
,”
J. Mech. Phys. Solids
,
48
, pp.
1519
1540
.
21.
Iijima
,
S.
,
Brabec
,
C.
,
Maiti
,
A.
, and
Bernholc
,
J.
,
1996
, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
,
104
, pp.
2089
2092
.
22.
Chopra
,
N. G.
,
Benedict
,
L. X.
,
Crespi
,
V. H.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
Z.
,
1995
, “
Fully Collapsed Carbon Nanotubes
,”
Nature (London)
,
377
, pp.
135
138
.
23.
Despres
,
J. F.
,
Daguerre
,
E.
, and
Lafdi
,
K.
,
1995
, “
Flexibility of Graphene Layers in Carbon Nanotubes
,”
Carbon
,
33
, pp.
87
89
.
24.
Gao
,
H. J.
, and
Klein
,
P.
,
1998
, “
Numerical Simulation of Crack Growth in an Isotropic Solid With Randomized Internal Cohesive Bonds
,”
J. Mech. Phys. Solids
,
46
, pp.
187
218
.
25.
Milstein
,
F.
,
1980
, “
Review: Theoretical Elastic Behavior at Large Strains
,”
J. Mater. Sci.
,
15
, pp.
1071
1084
.
26.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
,
1996
, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
,
73
, pp.
1529
1563
.
27.
LeSar
,
R.
,
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
,
1989
, “
Finite-Temperature Defect Properties From Free-Energy Minimization
,”
Phys. Rev. Lett.
,
63
, pp.
624
627
.
You do not currently have access to this content.