The thermal fracture behavior in functionally graded yttria stabilized zirconia–NiCoCrAlY bond coat alloy thermal barrier coatings was studied using analytical models. The response of three coating architectures of similar thermal resistance to laser thermal shock tests was considered. Mean field micromechanics models were used to predict the effective thermoelastic and time-dependent (viscoplastic) properties of the individual layers of the graded thermal barrier coatings (TBCs). These effective properties were then utilized in fracture mechanics analyses to study the role of coating architecture on the initiation of surface cracks. The effect of the surface crack morphology and coating architecture on the propensity for propagation of horizontal delamination cracks was then assessed. The results of the analyses are correlated with previously reported experimental results. Potential implications of the findings on architectural design of these material systems for enhanced thermal fracture resistance are discussed.

1.
Geiger
,
G.
,
1992
, “
Ceramic Coatings Enhance Material Performance
,”
Am. Ceram. Soc. Bull.
,
71
(
10
),
Oct
Oct
.
2.
Bennett, A., 1984, “Rolls-Royce Experience with Thermal Barrier Coatings,” Rolls-Royce Report No. PNR 90222.
3.
Mumm
,
D. R.
, and
Evans
,
A. G.
,
2000
, “
On the Role of Imperfections in the Failure of a Thermal Barrier Coating Made by Electron Beam Deposition
,”
Acta Mater.
,
48
(
8
), pp.
1815
1827
.
4.
Evans
,
A. G.
,
Mumm
,
D. R.
, and
Hutchinson
,
J. W.
,
2001
, “
Mechanisms Controlling the Durability of Thermal Barrier Coatings
,”
Prog. Mater. Sci.
,
46
, pp.
505
553
.
5.
Beele
,
W.
,
Marijnissen
,
G.
, and
van Lieshout
,
A.
,
1999
, “
The Evolution of Thermal Barrier Coatings—Status and Upcoming Solutions for Today’s Key Issues
,”
Surf. Coat. Technol.
,
120–121
, pp.
61
67
.
6.
Mumm
,
D. R.
,
Evans
,
A. G.
, and
Spitsberg
,
I. T.
,
2001
, “
Characterization of a Cyclic Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System
,”
Acta Mater.
,
49
(
12
), pp.
2329
2340
.
7.
Zhou
,
Y. C.
, and
Hashida
,
T.
,
2001
, “
Coupled Effects of Temperature Gradient and Oxidation on Thermal Stress in Thermal Barrier Coating System
,”
Int. J. Solids Struct.
,
38
(
24–25
), pp.
4235
4264
.
8.
Nusier
,
S. Q.
, and
Newaz
,
G. M.
,
2000
, “
Growth of Interfacial Cracks in a TBC/Superalloy System due to Oxide Volume Induced Internal Pressure and Thermal Loading
,”
Int. J. Solids Struct.
,
37
(
15
), pp.
2151
2166
.
9.
Rabiei
,
A.
, and
Evans
,
A. G.
,
2000
, “
Failure Mechanisms Associated With the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings
,”
Acta Mater.
,
48
(
15
), pp.
3963
3976
.
10.
Ali
,
M. Y.
,
Nusier
,
S. Q.
, and
Newaz
,
G. M.
,
2001
, “
Mechanics of Damage Initiation and Growth in a TBC/Superalloy System
,”
Int. J. Solids Struct.
,
38
, pp.
3329
3340
.
11.
Kokini
,
K.
, and
Takeuchi
,
Y. R.
,
1994
, “
Initiation of Surface Cracks in Multilayer Ceramic Thermal Barrier Coatings Under Thermal Loads
,”
Mater. Sci. Eng., A
,
A189
, pp.
301
309
.
12.
Zhu
,
D.
, and
Miller
,
R. A.
,
1998
, “
Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia Based Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
108
, pp.
114
120
.
13.
Choules
,
B. D.
, and
Kokini
,
K.
, and
Taylor
,
T. A.
,
2001
, “
Thermal Fracture of Ceramic Thermal Barrier Coatings Under High Heat Flux With Time-Dependent Behavior—Part I: Experimental Results
,”
Mater. Sci. Eng., A
,
A299
, pp.
296
304
.
14.
Takeuchi
,
Y. R.
, and
Kokini
,
K.
,
1994
, “
Thermal Fracture of Multilayer Ceramic Thermal Barrier Coatings
,”
ASME J. Eng. Gas Turbines Power
,
116
, pp.
266
271
.
15.
Choules, B. D., and Kokini, K., 1997, “Interface Thermal Fracture of Ceramic Coatings in a High Heat Flux Environment,” Thermal Stress ’97, Rochester Institute of Technology, Rochester, NY.
16.
Rejda
,
F.
,
Socie
,
D. F.
, and
Itoh
,
T.
,
1999
, “
Deformation Behavior of Plasma Sprayed Thick Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
113
, pp.
218
226
.
17.
Thurn
,
G.
,
Schneider
,
G. A.
, and
Aldinger
,
F.
,
1997
, “
High-Temperature Deformation of Plasma-Sprayed ZrO2 Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
,
A233
, pp.
176
182
.
18.
Khor
,
K. A.
,
Dong
,
Z. L.
, and
Gu
,
Y. W.
,
1999
, “
Plasma Sprayed Functionally Graded Thermal Barrier Coatings
,”
Mater. Lett.
,
38
, pp.
437
444
.
19.
Dong
,
Z. L.
,
Khor
,
K. A.
, and
Gu
,
Y. W.
,
1999
, “
Microstructure Formation in Plasma Sprayed Functionally Graded NiCoCrAlY/yttria-Stabilized Zirconia Coatings
,”
Surf. Coat. Technol.
,
114
, pp.
181
186
.
20.
Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I., 1990, Proceedings of the First International Symposium on Functionally Graded Materials (FGM’90) Functionally Graded Materials Forum, Tokyo, Japan.
21.
Reimanis, I., Bowman, K., Sampath, S., and Trumble, K., 2003, Proceedings of the Sixth International Symposium on Functionally Graded Materials (FGM’ 2000) American Ceramic Society, Westerville, OH, in press.
22.
Bao
,
G.
, and
Wang
,
L.
,
1995
, “
Multiple Cracking in Functionally Graded Ceramic/Metal Coatings
,”
Int. J. Solids Struct.
,
32
(
19
), pp.
2853
2871
.
23.
Bao
,
G.
, and
Cai
,
H.
,
1997
, “
Delamination Cracking in Functionally Graded Coating/Metal Substrate System
,”
Acta Mater.
,
45
(
4
), pp.
1055
1066
.
24.
Erdogan
,
F.
, and
Wu
,
B. H.
,
1996
, “
Crack Problems In FGM Layers Under Thermal Stresses
,”
J. Therm. Stresses
,
19
, pp.
237
265
.
25.
Lee
,
Yi-Der
, and
Erdogan
,
F.
,
1998
, “
Interface Cracking of FGM Coating Under Steady-State Heat Flow
,”
Eng. Fract. Mech.
,
59
(
3
), pp.
361
380
.
26.
Kokini
,
K.
, and
Takeuchi
,
Y. R.
,
1998
, “
Multiple Surface Thermal Fracture of Graded Ceramic Coatings
,”
J. Therm. Stresses
,
21
, pp.
715
725
.
27.
Kokini
,
K.
,
Takeuchi
,
Y. R.
, and
Choules
,
B. D.
,
1996
, “
Surface Thermal Cracking Owing to Stress Relaxation: Zirconia vs. Mullite
,”
Surf. Coat. Technol.
,
82
, pp.
77
82
.
28.
Kokini
,
K.
,
DeJonge
,
J.
,
Rangaraj
,
S. V.
, and
Beardesly
,
B.
,
2002
, “
Thermal Fracture in Functionally Graded Thermal Barrier Coatings With Similar Thermal Resistance
,”
Surf. Coat. Technol.
,
154
, pp.
223
231
.
29.
Nemat-Nasser, Sia, and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, New York.
30.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
31.
Rangaraj
,
S. V.
, and
Kokini
,
K.
,
2002
, “
Time-Dependent Behavior of Ceramic (Zirconia)-Metal (NiCoCrAlY) Particulate Composites
,”
Mech. Time-Depend. Mater.
,
6
, pp.
171
191
.
32.
Banerjee, A., 1999, “Thermal Fracture of Precracked Thermal Barrier Coatings,” M. S. Thesis, Purdue University, West Lafayette, IN.
33.
Wereszczak, A. A., Hemrick, J. G., Kirkland, T. P., Haynes, J. A., Fitzgerald, T. J., and Junkin, J. E., 1998, “Stress Relaxation of MCrAlY Bond Coat Alloys as a Function of Temperature and Strain,” ASME Paper No. 98-GT-403.
34.
Hershey
,
A. V.
,
1954
, “
The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
, pp.
236
236
.
35.
Hill
,
R.
,
1965
, “
Continuum micromechanics of elastoplastic polycrystals
,”
J. Mech. Phys. Solids
,
13
, pp.
89
89
.
36.
Choules, B. D., 1998, ‘Thermal fracture of ceramic coatings under high heat flux with time dependent behavior,’ Ph.D. Thesis, Purdue University, West Lafayette, IN.
37.
McDonald
,
K. R.
,
Dryden
,
J. R.
,
Majumdar
,
A.
, and
Zok
,
F. W.
,
2000
, “
Thermal Conductance of Delamination Cracks in a Fiber Reinforced Ceramic Composite
,”
J. Am. Ceram. Soc.
,
83
(
3
), pp.
553
562
.
38.
Smelser
,
R. E.
,
1979
, “
Evaluation of Stress Intensity Factors for Bimaterial Bodies Using Numerical Crack Flank Displacement Data
,”
Int. J. Fract.
,
15
(
2
), pp.
135
143
.
39.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.
40.
ABAQUS®/Standard User’s Manual, 2001, Hibbitt, Karlsson and Sorenson, Inc.
41.
Landes, J. D., and Begley, J. A., 1976, “Mechanics of Crack Growth,” ASTM STP 590, American Society for Testing and Materials, pp. 128–148.
42.
Nikbin, K. M., Webster, G. A., and Turner, C. E., 1976, Cracks and Fracture, ASTM STP 601, ASTM, Philadelphia, pp. 47–62.
43.
Sun
,
C. T.
, and
Qian
,
W.
,
1997
, “
The Use of Finite Extension Strain Energy Release Rates in Fracture of Interfacial Cracks
,”
Int. J. Solids Struct.
,
34
(
2
), pp.
2595
2609
.
You do not currently have access to this content.