The original three-dimensional elasticity problem of isotropic prismatic beams has been solved analytically by the variational asymptotic method (VAM). The resulting classical model (Euler-Bernoulli-like) is the same as the superposition of elasticity solutions of extension, Saint-Venant torsion, and pure bending in two orthogonal directions. The resulting refined model (Timoshenko-like) is the same as the superposition of elasticity solutions of extension, Saint-Venant torsion, and both bending and transverse shear in two orthogonal directions. The fact that the VAM can reproduce results from the theory of elasticity proves that two-dimensional finite-element-based cross-sectional analyses using the VAM, such as the variational asymptotic beam sectional analysis (VABS), have a solid mathematical foundation. One is thus able to reproduce numerically with VABS the same results for this problem as one obtains from three-dimensional elasticity, but with orders of magnitude less computational cost relative to three-dimensional finite elements.

1.
Le, K. C., 1999, Vibrations of Shells and Rods, 1st Ed., Springer, Berlin.
2.
Ciarlet
,
P. G.
, and
Destuynder
,
P.
,
1979
, “
A Justification of a Nonlinear Model in Plate Theory
,”
Comput. Methods Appl. Mech. Eng.
,
17/18
, pp.
227
258
.
3.
Berdichevsky
,
V. L.
,
1979
, “
Variational-Asymptotic Method of Constructing a Theory of Shells
,”
Prikl. Mat. Mekh.
,
43
(
4
), pp.
664
687
.
4.
Hodges
,
D. H.
,
Atilgan
,
A. R.
,
Cesnik
,
C. E. S.
, and
Fulton
,
M. V.
,
1992
, “
On a Simplified Strain Energy Function for Geometrically Nonlinear Behavior of Anisotropic Beams
,”
Composites Eng.
,
2
(
5–7
), pp.
513
526
.
5.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
,
1993
, “
Stiffness Constants for Initially Twisted and Curved Composite Beams
,”
Appl. Mech. Rev.
,
46
(
11
, Part 2), pp.
S211–S220
S211–S220
.
6.
Cesnik
,
C. E. S.
, and
Hodges
,
D. H.
,
1997
, “
VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling
,”
J. Am. Helicopter Soc.
,
42
(
1
), pp.
27
38
.
7.
Popescu
,
B.
, and
Hodges
,
D. H.
,
1999
, “
On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory
,”
Int. J. Solids Struct.
,
37
(
3
), pp.
535
558
.
8.
Popescu
,
B.
,
Hodges
,
D. H.
, and
Cesnik
,
C. E. S.
,
2000
, “
Obliqueness Effects in Asymptotic Cross-Sectional Analysis of Composite Beams
,”
Comput. Struct.
,
76
(
4
), pp.
533
543
.
9.
Yu
,
W.
,
Hodges
,
D. H.
,
Volovoi
,
V. V.
, and
Cesnik
,
C. E. S.
,
2002
, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
,
39
(
19
), pp.
5101
5121
.
10.
Yu
,
W.
,
Volovoi
,
V. V.
,
Hodges
,
D. H.
, and
Hong
,
X.
,
2002
, “
Validation of the Variational Asymptotic Beam Sectional Analysis
,”
AIAA J.
,
40
(
10
), pp.
2105
2112
.
11.
Trabucho, L., and Viano, J., 1996, “Mathematical Modeling of Rods,” Handbook of Numerical Analysis, Vol. IV, P. Ciarlet and J. Lions, eds., Elsevier, New York, pp. 487–974.
12.
Volovoi
,
V. V.
,
Hodges
,
D. H.
,
Cesnik
,
C. E. S.
, and
Popescu
,
B.
,
2001
, “
Assessment of Beam Modeling Methods for Rotor Blade Applications
,”
Math. Comput. Modell.
,
33
(
10–11
), pp.
1099
1112
.
13.
Danielson
,
D. A.
, and
Hodges
,
D. H.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
.
14.
Hodges
,
D. H.
,
1999
, “
Non-linear Inplane Deformation and Buckling of Rings and High Arches
,”
Int. J. Non-Linear Mech.
,
34
(
4
), pp.
723
737
.
15.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, Maidenhead, UK.
16.
Renton
,
J. D.
,
1991
, “
Generalized Beam Theory Applied to Shear Stiffness
,”
Int. J. Solids Struct.
,
27
(
15
), pp.
1955
1967
.
17.
Berdichevsky
,
V. L.
, and
Kvashnina
,
S. S.
,
1976
, “
On Equations Describing the Transverse Vibrations of Elastic Bars
,”
Prikl. Mat. Mekh.
,
40
, pp.
120
135
.
You do not currently have access to this content.