The frictional collapse of an assembly of equisized spheres is studied by a discrete element model. The macroscopic constitutive response is determined as a function of the level of Coulomb friction between particles. It is found that the level of Coulomb friction has a strong effect upon the relative proportion of sliding and rolling between particles, and consequently upon the macroscopic strength of the granular assembly. The discrete element predictions are shown to be in good agreement with experimental results obtained from triaxial tests on an aggregate of steel spheres. It is demonstrated that the shape of the collapse surface can be adequately represented by the Lade-Duncan continuum model.

1.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
1
, pp.
47
65
.
2.
Thornton
,
C.
, and
Barnes
,
D. J.
,
1986
, “
Computer Simulated Deformation of Compact Granular Assemblies
,”
Acta Mech.
,
64
, pp.
45
61
.
3.
Ting
,
J. M.
,
Corkum
,
B. T.
,
Kauffmann
,
C. R.
, and
Greco
,
C.
,
1989
, “
Discrete Numerical Model for Soil Mechanics
,”
J. Geotech. Eng.
,
115
, pp.
379
398
.
4.
Bathurst
,
R. J.
, and
Rothenburg
,
L.
,
1990
, “
Observations on Stress-Force Fabric Relationships in Idealized Granular Materials
,”
Mech. Mater.
,
9
, pp.
65
80
.
5.
Bardet
,
J. P.
, and
Proubet
,
J.
,
1992
, “
Shear-Band Analysis in Idealized Granular Material
,”
J. Eng. Mech.
,
118
, pp.
397
415
.
6.
Oda, M., Iwashita, K., and Kazama, H., 1997, “Micro-Structure Developed in Shear Bands of Dense Granular Soils and Its Computer Simulation. Mechanism of Dilatancy and Failure,” IUTAM Symposium on Mechanics of Granular and Porous Materials, N. A. Fleck and A. C. F. Cocks, eds., Kluwer, Dordrecht, The Netherlands, pp. 353–364.
7.
Thomas
,
P. A.
, and
Bray
,
J. D.
,
1999
, “
Capturing Nonspherical Shape of Granular Media With Disk Clusters
,”
J. Geotech. Geoenvir. Eng.
,
125
, pp.
169
178
.
8.
Thornton
,
C.
,
2000
, “
Numerical Simulations of Deviatoric Shear Deformation of Granular Media
,”
Geotechnique
,
50
, pp.
43
53
.
9.
Kruyt
,
N. P.
, and
Rothenburg
,
L.
,
2002
, “
Probability Density Functions of Contact Forces for Cohesionless Frictional Granular Materials
,”
Int. J. Solids Struct.
,
39
, pp.
571
583
.
10.
Goldscheider
,
M.
,
1976
, “
Grenzbedingung und Fliessregel von Sand
,”
Mech. Res. Commun.
,
3
, pp.
463
468
.
11.
Lade
,
P. V.
, and
Kim
,
M. K.
,
1988
, “
Single Hardening Constitutive Model for Frictional Materials: III. Comparison With Experimental Data
,”
Comput. Geotech.
,
6
, pp.
31
47
.
12.
Christofferson
,
J.
,
Mehrabadi
,
M. M.
, and
Nemat-Nasser
,
S.
,
1981
, “
A Micromechanical Description of Granular Material Behavior
,”
ASME J. Appl. Mech.
,
48
, pp.
339
344
.
13.
Walton
,
K.
,
1987
, “
The Effective Elastic Moduli of a Random Packing of Spheres
,”
J. Mech. Phys. Solids
,
35
, pp.
213
226
.
14.
Jenkins, J. T., 1988, “Volume Change in Small Strain Axisymmetric Deformations of Granular Material,” Micromechanics of Granular Materials, M. Satake and J. T. Jenkins, ed., Elsevier, Amsterdam, pp. 143–152.
15.
Fleck
,
N. A.
,
Kuhn
,
L. T.
, and
McMeeking
,
R. M.
,
1992
, “
Yielding of Metal Powder Bonded by Isolated Contacts
,”
J. Mech. Phys. Solids
,
40
, pp.
1139
1162
.
16.
Stora˚kers
,
B.
,
Fleck
,
N. A.
, and
McMeeking
,
R. M.
,
1999
, “
The Viscoplastic Compaction of Composite Powders
,”
J. Mech. Phys. Solids
,
47
, pp.
785
815
.
17.
Liao
,
C. L.
,
Chan
,
T. C.
,
Suiker
,
A. S. J.
, and
Chang
,
C. S.
,
2000
, “
Pressure-Dependent Elastic Moduli of Granular Assemblies
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
24
, pp.
265
279
.
18.
Suiker
,
A. S. J.
,
de Borst
,
R.
, and
Chang
,
C. S.
,
2001
, “
Micro-Mechanical Modelling of Granular Material—Part 1: Derivation of a Second-Gradient Micro-Polar Constitutive Theory
,”
Acta Mech.
,
149
, pp.
161
180
.
19.
Suiker
,
A. S. J.
,
de Borst
,
R.
, and
Chang
,
C. S.
,
2001
, “
Micro-Mechanical Modelling of Granular Material—Part 2: Plane Wave Propagation in Infinite Media
,”
Acta Mech.
,
149
, pp.
181
200
.
20.
Digby
,
P. J.
,
1981
, “
The Effective Elastic Moduli of Porous Granular Rock
,”
ASME J. Appl. Mech.
,
48
, pp.
803
808
.
21.
Chang
,
C. S.
,
Sundaram
,
S. S.
, and
Misra
,
A.
,
1989
, “
Initial Moduli of Particulated Mass With Frictional Contacts
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
13
, pp.
629
644
.
22.
Liao
,
C. L.
,
Chang
,
T. P.
,
Young
,
D. H.
, and
Chang
,
C. S.
,
1997
, “
Stress-Strain Relationships for Granular Materials Based on the Hypothesis of Best-Fit
,”
Int. J. Solids Struct.
,
34
, pp.
4087
4100
.
23.
Heyliger
,
P. R.
, and
McMeeking
,
R. M.
,
2001
, “
Cold Plastic Compaction of Powders by a Network Model
,”
J. Mech. Phys. Solids
,
49
, pp.
2031
2054
.
24.
Redanz
,
P.
, and
Fleck
,
N. A.
,
2001
, “
The Compaction of a Random Distribution of Metal Cylinders by the Discrete Element Method
,”
Acta Mater.
,
49
, pp.
4325
4335
.
25.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, London, UK.
26.
Cundall, P. A., 1988, “Computer Simulations of Dense Sphere Assemblies,” Micromechanics of Granular Materials, M. Satake and J. T. Jenkins, ed., Elsevier, Amsterdam, pp. 113–123.
27.
Bathurst
,
R. J.
, and
Rothenburg
,
L.
,
1988
, “
Micromechanical Aspects of Isotropic Granular Assemblies With Linear Contact Interactions
,”
ASME J. Appl. Mech.
,
55
, pp.
17
23
.
28.
Torquato, S., 2002, Random Heterogeneous Materials, Microstructure and Macroscopic Properties, Springer-Verlag, New York.
29.
Suiker, A. S. J., 2002, The Mechanical Behavior of Ballasted Railway Tracks, dissertation, Delft University Press, Delft, The Netherlands (pdf-format available at http://www.library.tudelft.nl/dissertations/).
30.
Alexander
,
S.
,
1998
, “
Amorphous Solids: Their Structure, Lattice Dynamics and Elasticity
,”
Phys. Rep.
,
296
, pp.
65
236
.
31.
Silbert
,
L. E.
,
Ertas¸
,
D.
,
Grest
,
G. S.
,
Halsey
,
T. C.
, and
Levine
,
D.
,
2002
, “
Geometry of Frictionless and Frictional Sphere Packings
,”
Phys. Rev. E
,
65
(
031304
), pp.
1
6
.
32.
Edwards
,
S. F.
,
1998
, “
The Equations of Stress in a Granular Material
,”
Physica A
,
249
, pp.
226
231
.
33.
Ng
,
T. T.
, and
Dobry
,
R.
,
1994
, “
A Non-linear Numerical Model for Soil Mechanics
,”
J. Geotech. Eng.
,
120
, pp.
388
403
.
34.
Lambe, T. W., and Whitman, R. V., 1969, Soil Mechanics, John Wiley and Sons, New York.
35.
Davy, C. A., Fleck, N. A., and Bolton, M. D., 2004, “The Collapse Behavior of a Sugar Aggregate,” submitted, for publication.
36.
Lade
,
P. V.
, and
Duncan
,
J. M.
,
1975
, “
Elastoplastic Stress-Strain Theory for Cohesionless Soil
,”
J. Geotech. Eng.
,
101
, pp.
1037
1053
.
37.
Chen, W. F., and Saleeb, A. F., 1982, Constitutive Equations for Engineering Materials, John Wiley and Sons, New York.
You do not currently have access to this content.