The fundamental characteristics of the two-dimensional cavitating MHD flow of an electrically conducting magnetic fluid in a vertical converging-diverging nozzle under a strong nonuniform magnetic field are numerically predicted to realize the further development and high performance of a two-phase liquid-metal MHD power generation system using electrically conducting magnetic fluids. First, the governing equations of the cavitating flow of a mercury-based magnetic fluid based on the unsteady thermal nonequilibrium multifluid model are presented, and several flow characteristics are numerically calculated taking into account the effect of the strong nonuniform magnetic field. Based on the numerical results, the two-dimensional structure of the cavitating flow and cavitation inception phenomena of the mercury-based magnetic fluid through a converging-diverging nozzle are shown in detail. The numerical results demonstrate that effective two-phase magnetic driving force, fluid acceleration, and high power density are obtained by the practical use of the magnetization of the working fluid. Also clarified is the precise control of the cavitating flow of magnetic fluid that is possible by effective use of the magnetic body force that acts on cavitation bubbles.

1.
Petrick
,
M.
, and
Branover
,
H.
,
1985
, “
Liquid Metal MHD Power Generation: Its Evolution and Status
,”
Prog. Astronaut. Aeronaut.
,
100
, pp.
371
400
.
2.
Alexander
,
Y.
, and
Branover
,
H.
,
1982
, “
An Analytical Model of a Two-Phase Liquid Metal Magnetohydrodynamic Generator
,”
Phys. Fluids
,
25
, pp.
446
451
.
3.
Dobran
,
F.
,
1981
, “
Analysis of Two-Phase Flow Magnetohydrodynamic Generator Performance in Terms of Flow and Electrical Conductivity Distribution Parameters
,”
Int. J. Multiphase Flow
,
7
, pp.
595
617
.
4.
Eckert
,
S.
,
Gerbeth
,
G.
, and
Lielausis
,
O.
,
2000
, “
The Behavior of Gas Bubbles in a Turbulent Liquid Metal Magnetohydrodynamic Flow, Part I: Dispersion in Quasi-Two-Dimensional Magnetohydrodynamic Turbulence
,”
Int. J. Multiphase Flow
,
26
, pp.
45
66
.
5.
Eckert
,
S.
,
Gerbeth
,
G.
, and
Lielausis
,
O.
,
2000
, “
The Behavior of Gas Bubbles in a Turbulent Liquid Metal Magnetohydrodynamic Flow, Part II: Magnetic Field Influence on the Slip Ratio
,”
Int. J. Multiphase Flow
,
26
, pp.
67
82
.
6.
Eckert
,
S.
,
Gerbeth
,
G.
,
Mihalache
,
G.
, and
Thibault
,
J.-P.
,
1997
, “
Influence of External Magnetic Fields on Slip Ratio in LMMHD Two-Phase Flow
,”
Magnetohydrodynamics (N.Y.)
,
33
, pp.
239
247
.
7.
Ishimoto
,
J.
,
Okubo
,
M.
,
Nishiyama
,
H.
, and
Kamiyama
,
S.
,
1995
, “
Basic Study on an Energy Conversion System Using Gas-Liquid Two-Phase Flows of Magnetic Fluid (Analysis on the Mechanism of Pressure Rise)
,”
JSME Int. J., Ser. B
,
39
, pp.
72
79
.
8.
Kamiyama
,
S.
, and
Ishimoto
,
J.
,
1995
, “
Boiling Two-Phase Flows of Magnetic Fluid in a Nonuniform Magnetic Field
,”
J. Magn. Magn. Mater.
,
149
, pp.
125
131
.
9.
Ishimoto
,
J.
,
2002
, “
Cavitating Flow of Magnetic Fluid in Converging-Diverging Nozzle Under Nonuniform Magnetic Field
,”
Magnetohydrodynamics
,
38
, pp.
307
317
.
10.
Charles
,
S. W.
, and
Popplewell
,
J.
,
1980
, “
Progress in the Development of Ferromagnetic Liquids
,”
IEEE Trans. Magn.
,
16
, pp.
172
177
.
11.
Fedonenko
,
A. I.
, and
Smirnov
,
V. I.
,
1983
, “
Particle Interaction and Clumping an Electrically Conducting Magnetic Fluid
,”
J. Magn. Magn. Mater.
,
19
, pp.
388
391
.
12.
Shepherd
,
P. G.
, and
Popplewell
,
J.
,
1971
, “
Ferrofluids Containing Ni-Fe Alloy Particles
,”
Philos. Mag.
,
23
, pp.
239
239
.
13.
Alekseev
,
V. A.
,
1991
, “
Structural Transformations in an Electrically Conducting Ferrocolloid
,”
Magnetohydrodynamics (N.Y.)
,
27
, pp.
18
22
.
14.
Okubo
,
M.
,
Ishimoto
,
J.
,
Nishiyama
,
H.
, and
Kamiyama
,
S.
,
1993
, “
Analytical Study on Two-Phase MHD Flow of Electrically Conducting Magnetic Fluid
,”
Magnetohydrodynamics (N.Y.)
,
29
, pp.
291
297
.
15.
Ishimoto, J., Okubo, M., and Kamiyama, S., 1995, “Effect of Magnetic Field on the Stability of Boiling Two-Phase Flows of Magnetic Fluid,” Proc. 2nd Int. Conf. Multiphase Flow, A. Serizawa, ed., Kyoto, Japan, Vol. 4, pp. FC17–FC24.
16.
Kamiyama, S., and Yamasaki, T., 1975, “Study on Magnetohydrodynamic Flow, Part I (the Effect of Magnetic Field on Cavitation of Mercury Flow),” Report of the Institute of High Speed Mechanics, Tohoku Univ., 36(344), pp. 1–16.
17.
Kataoka
,
I.
, and
Serizawa
,
A.
,
1989
, “
Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow
,”
Int. J. Multiphase Flow
,
15
, pp.
843
855
.
18.
Harlow
,
F. H.
, and
Amsden
,
A. A.
,
1975
, “
Numerical Calculation of Multiphase Fluid Flow
,”
J. Comput. Phys.
,
17
, pp.
19
52
.
19.
Yamamoto
,
S.
,
Hagari
,
H.
, and
Murayama
,
M.
,
1997
, “
Numerical Simulation of Condensation around the 3-d Wing
,”
Trans. Jpn. Soc. Aero. Space Sci.
,
138
, pp.
182
189
.
20.
Young
,
J. B.
,
1992
, “
Two-Dimensional, Nonequilibrium, Wet-Stream Calculations for Nozzles and Turbine Cascades
,”
ASME J. Turbomach.
,
114
, pp.
569
579
.
21.
Ueno
,
K.
,
1991
, “
Inertia Effect in Two-Dimensional MHD Channel Flow Under a Traveling Sine Wave Magnetic Field
,”
Phys. Fluids A
,
3
, pp.
3107
3116
.
22.
Ueno
,
K.
,
1993
, “
Effect of Turnaround Lines of Magnetic Flux in Two-Dimensional MHD Channel Flow Under a Traveling Sine Wave Magnetic Field
,”
Phys. Fluids A
,
5
, pp.
490
492
.
23.
Shu
,
D.
,
Sun
,
B.
,
Wang
,
J.
,
Li
,
T.
,
Xu
,
Z.
, and
Zhou
,
Y.
,
2000
, “
Numerical Calculation of the Electromagnetic Expulsive Force Upon Nonmetallic Inclusions in an Aluminum Melt
,”
Metall. Mater. Trans. B
,
31B
(
6
), pp.
1527
1533
.
24.
Meir, A. J., and Schmidt, P. G., 1999, Fluid Flow Phenomena in Metals Processing, N. El-Kaddah et al., ed., TMS, San Diego.
25.
Leenov
,
D.
, and
Kolin
,
A.
,
1954
, “
Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Particles
,”
J. Chem. Phys.
,
22
(
4
), pp.
683
688
.
26.
Tanatugu
,
N.
,
Fujii-E
,
Y.
, and
Suita
,
T.
,
1972
, “
Electrical Conductivity of Liquid Metal Two-Phase Mixture in Bubbly and Slug Flow Regime
,”
J. Nucl. Sci. Technol.
,
9
, pp.
753
755
.
27.
Shizawa
,
K.
, and
Tanahashi
,
T.
,
1987
, “
A New Complete Set of Basic Equations for Conducting Magnetic Fluids With Internal Rotation (Derivation by Thermodynamical Method)
,”
J. Magn. Magn. Mater.
,
65
, pp.
181
184
.
28.
Shizawa
,
K.
, and
Tanahashi
,
T.
,
1986
, “
New Constitutive Equations for Conducting Magnetic Fluids With Internal Rotation (Thermodynamical Discussions)
,”
Bull. JSME
,
29
, pp.
2878
2884
.
29.
Cross
,
M. M.
,
1975
, “
Viscosity-Concentration-Shear Rate Relations for Suspensions
,”
Rheol. Acta
,
14
, pp.
402
403
.
30.
Tomiyama
,
A.
,
Zun
,
I.
,
Higaki
,
H.
,
Makino
,
Y.
, and
Sakaguchi
,
T.
,
1997
, “
A Three-Dimensional Particle Tracking Method for Bubbly Flow Simulation
,”
Nucl. Eng. Des.
,
175
, pp.
77
86
.
31.
Fan, L. S., and Zhu, C., 1998, Principles of Gas-Solid Flows, Cambridge University Press, New York.
32.
Patankar
,
N. A.
, and
Joseph
,
D. D.
,
2001
, “
Modeling and Numerical Simulation of Particle Flows by the Eulerian-Lagrangian Approach
,”
Int. J. Multiphase Flow
,
27
, pp.
1659
1684
.
33.
Murai
,
Y.
, and
Matsumoto
,
Y.
,
2000
, “
Numerical Study of the Three-Dimensional Structure of a Bubble Plume
,”
ASME J. Fluids Eng.
,
122, pp.
754
760
.
34.
Auton
,
T. R.
,
1988
, “
The Force Exerted on a Body in Invisid Unsteady Non-uniform Rotational Flow
,”
J. Fluid Mech.
,
197
, pp.
241
257
.
35.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles. Academic Press, San Diego.
36.
Dobran
,
F.
,
1988
, “
Liquid and Gas-Phase Distributions in a Jet With Phase Change
,”
ASME J. Heat Transfer
,
110
, pp.
955
960
.
37.
Solbrig
,
C. W.
,
McFadden
,
J. H.
,
Lyczkowski
,
R. W.
, and
Hughes
,
E. D.
,
1978
, “
Heat Transfer and Friction Correlations Required to Describe Steam-Water Behavior in Nuclear Safety Studies
,”
AIChE Symp. Ser.
,
174
, pp.
100
128
.
38.
Hirt, C. W., and Romero, N. C., 1975, Application of a Drift Flux Model to Flashing in Straight Pipes, LA-6005-MS, Los Alamos Scientific Laboratory Report.
39.
Moses
,
C. A.
, and
Stein
,
G. D.
,
1978
, “
On the Growth of Steam Droplets Formed in Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
ASME J. Fluids Eng.
,
100
, pp.
311
322
.
40.
Crangle
,
J.
, and
Hallam
,
G. C.
,
1963
, “
The Magnetization of Face-centred Cubic and Body-centred Cubic Iron+Nickel Alloys
,”
Proc. Phys. Soc., London, Sect. A
,
272
, pp.
119
119
.
41.
Otis
,
D. R.
,
1966
, “
Computation and Measurement of Hall Potentials and Flow-field Perturbations in Magnetogasdynamic Flow of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
24
, pp.
41
63
.
42.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convection Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.
43.
Rosenfeld
,
M.
,
Kwak
,
D.
, and
Vinokur
,
M.
,
1991
, “
A Fractional Step Solution Method for the Unsteady Incompressible Navier-Stokes Equations in Generalized Coordinate Systems
,”
J. Comput. Phys.
,
94
, pp.
102
137
.
44.
Tomiyama
,
A.
, and
Hirano
,
M.
,
1994
, “
An Improvement of the Computational Efficiency of the SOLA Method
,”
JSME Int. J., Ser. B
,
37
, pp.
821
826
.
45.
Amsden, A. A., and Harlow, F. H., 1970, The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows, LA-4370, Los Alamos Scientific Laboratory Report.
46.
JSME, 1997, Thermophysical Properties of Fluids, Japan Soc. Mech. Eng., Tokyo.
You do not currently have access to this content.