Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model for the human annulus fibrosus is developed. A strain energy function representing the anisotropic elastic material behavior of the annulus fibrosus is additively decomposed into three parts nominally representing the energy contributions from the matrix, fiber and fiber-matrix shear interaction, respectively. Taking advantage of the laminated structure of the annulus fibrosus with one family of aligned fibers in each lamella, interlamellar fiber-fiber interaction is eliminated, which greatly simplifies the constitutive model. A simple geometric description for the shearing between the fiber and the matrix is developed and this quantity is used in the representation of the fiber-matrix shear interaction energy. Intralamellar fiber-fiber interaction is also encompassed by this interaction term. Experimental data from the literature are used to obtain the material parameters in the constitutive model and to provide model validation. Determination of the material parameters is greatly facilitated by the partition of the strain energy function into matrix, fiber and fiber-matrix shear interaction terms. A straightforward procedure for computation of the material parameters from simple experimental tests is proposed.

1.
Hickey
,
D. S.
, and
Hukins
,
D. W. L.
, 1980, “
X-Ray Diffraction Studies of the Arrangement of Collagenous Fibers in Human Fetal Intervertebral Disc
,”
J. Anat.
0021-8782,
131
, pp.
81
90
.
2.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
, 1989, “
Hierarchical Structure of the Intervertebral Disk
,”
Connect. Tissue Res.
0300-8207,
23
, pp.
75
88
.
3.
White
,
A. A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spine
,
Lippincott, Williams & Wilkins
, New York.
4.
Kelsey
,
J. L.
, and
White
,
A. A.
, 1980, “
Epidemiology and Impact of Low-Back Pain
,”
Spine
0362-2436,
5
, pp.
133
142
.
5.
Galante
,
J. O.
, 1967, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand. Suppl.
0300-8827,
100
, pp.
4
91
.
6.
Wu
,
H. C.
, and
Yao
,
R. F.
, 1976, “
Mechanical Behavior of the Human Annulus Fibrosus
,”
J. Biomech.
0021-9290,
9
, pp.
1
7
.
7.
Adams
,
M. A.
, and
Green
,
T. P.
, 1993, “
Tensile Properties of the Annulus Fibrosus, I The Contribution of Fiber-Matrix Interactions to Tensile Stiffness and Strength
,”
Eur. Spine J.
0940-6719,
2
, pp.
203
208
.
8.
Green
,
T. P.
,
Adams
,
M. A.
, and
Dolan
,
P.
, 1993, “
Tensile Properties of the Annulus Fibrosus: II Ultimate Tensile Strength and Fatigue Life
,”
Eur. Spine J.
0940-6719,
2
, pp.
209
214
.
9.
Best
,
B. A.
,
Guilak
,
F.
,
Setton
,
L. A.
,
Zhu
,
W.
,
Sae-Nejad
,
F.
,
Ratcliffe
,
A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1994, “
Compressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition
,”
Spine
0362-2436,
19
, pp.
212
221
.
10.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1994, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus
,”
Spine
0362-2436,
19
, pp.
1310
1319
.
11.
Acarroglu
,
E. R.
,
Latridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1995, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus
,”
Spine
0362-2436,
20
, pp.
2690
2701
.
12.
Ebara
,
S.
,
Latridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
, 1996, “
Tensile Properties of Nondegenerate Human Lumbar Annulus Fibrosus
,”
Spine
0362-2436,
21
, pp.
452
461
.
13.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 1997, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
0736-0266,
15
, pp.
814
819
.
14.
Itradis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1999, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
17
, pp.
732
737
.
15.
Fujita
,
Y.
,
Wagner
,
D. R.
,
Biviji
,
A. A.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
, 2000, “
Anisotropic Shear Behavior of the Annulus Fibrosus: Effect of Harvest Site and Tissue Prestrain
,”
Med. Eng. Phys.
1350-4533,
22
, pp.
349
357
.
16.
Bass
,
E. C.
,
Ashford
,
F. A.
,
Segal
,
M. R.
, and
Lotz
,
J. C.
, 2004, “
Biaxial Testing of Human Annulus Fibrosus and its Implications for a Constitutive Formulation
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1231
1242
.
17.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitinig
,
P.
, 2005, “
Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus
,”
Biomechanics and Modeling in Mechanobiology
3
, pp.
125
140
.
18.
Spencer
,
A. J. M.
, 1972,
Deformations of Fiber-reinforced Materials
,
Oxford Science
, NY.
19.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fiber-Reinforced Composites
,
Springer
, New York.
20.
Klisch
,
S. M.
, and
Lotz
,
J. C.
, 1999, “
Application of a Fiber-Reinforced Continuum Theory to Multiple Deformations of the Annulus Fibrosus
,”
J. Biomech.
0021-9290,
32
, pp.
1027
1036
.
21.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
, 2000, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
0374-3535,
61
, pp.
1
48
.
22.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-Bauer
,
C. A. J.
, 2001, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
4
, pp.
209
230
.
23.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Fröhlich
,
M.
, 2004, “
Multi-Segment FEA of the Human Lumbar Spine Including the Heterogeneity of the Annulus Fibrosus
,”
Comput. Mech.
0178-7675,
34
, pp.
147
163
.
24.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2000, “
A Linear Material Model for Fiber-Induced Anisotropy of the Annulus Fibrosus
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
173
179
.
25.
Elliott
,
D. M.
, and
Setton
,
L. A.
, 2001, “
Anisotropic and Inhomogeneous Tensile Behavior of the Human Annulus Fibrosus: Experiments Measurement and Material Model Predictions
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
256
263
.
26.
Sun
,
D. N.
, and
Leong
,
K. W.
, 2004, “
A Nonlinear Hyperelastic Mixture Theory for Anisotropy, Transport, and Swelling of Annulus Fibrosus
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
92
102
.
27.
Wagner
,
D. R.
, and
Lotz
,
J. C.
, 2004, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
22
, pp.
901
909
.
28.
Quapp
,
K. M.
, and
Weiss
,
J. A.
, 1998, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
757
763
.
29.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2001, “
Simple Shear Testing of Parallel-fibered Planar Soft Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
170
175
.
30.
Fung
,
Y. C.
, 1981,
Biomechanics—Mechanical Properties of Living Tissues
,
Springer-Verlag
, New York.
31.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of Continuous Medium
,
Prentice-Hall
, Englewood Cliffs, NJ.
32.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformation
,
Dover, Mineola
, NY.
33.
Guo
,
Z. Y.
,
Peng
,
X. Q.
, and
Moran
,
B.
, 2005, “
A Composite-Based Hyperelastic Constitutive Model for Soft Tissue and its Application to the Human Annulus Fibrosus
,” (unpublished).
34.
Merodio
,
J.
, and
Odgen
,
R. W.
, 2005, “
Mechanical Response of Fiber-reinforced Incompressible Non-Linearly Elastic Solid
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
213
227
.
35.
Marchand
,
F.
, and
Ahmed
,
A. M.
, 1990, “
Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosus
,”
Spine
0362-2436,
15
, pp.
402
410
.
36.
ABAQUS
, 2001,
ABAQUS/Standard User’s Manual, Version 6.2
,
Hibbitt, Karlson & Sorensen
, Inc., Pawtucket, R.I.
You do not currently have access to this content.