This paper employs the atomic-scale finite element method (AFEM) to study critical strain of axial buckling for carbon nanotubes (CNTs). Brenner et al. “second-generation” empirical potential is used to model covalent bonds among atoms. The computed energy curve and critical strain for (8, 0) single-walled CNT (SWNT) agree well with molecular dynamics simulations. Both local and global buckling are achieved, two corresponding buckling zones are obtained, and the global buckling behavior of SWNT with a larger aspect ratio approaches gradually to that of a column described by Euler’s formula. For double-walled CNTs with smaller ratio of length to outer diameter, the local buckling behavior can be explained by conventional shell theory very well. AFEM is an efficient way to study buckling of CNTs.

1.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
, II
,
Chi
,
V.
,
Brooks
,
F. P.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
, pp.
582
584
.
2.
Lourie
,
O.
,
Cox
,
D. M.
, and
Wagner
,
H. D.
, 1998, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
1638
1641
.
3.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
4.
Srivastava
,
D.
,
Menon
,
M.
, and
Cho
,
K.
, 1999, “
Nanoplasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression
,”
Phys. Rev. Lett.
0031-9007,
83
, pp.
2973
2976
.
5.
Xiao
,
T.
,
Xu
,
X.
, and
Liao
,
K.
, 2004, “
Characterization of Nonlinear Elasticity and Elastic Instability in Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
0021-8979,
95
, pp.
8145
8148
.
6.
Liew
,
K. M.
,
Wong
,
C. H.
,
He
,
X. Q.
,
Tan
,
M. J.
, and
Meguid
,
S. A.
, 2004, “
Nanomechanics of Single and Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
69
, p.
115429
.
7.
Sears
,
A.
, and
Batra
,
R. C.
, 2004, “
Macroscopic Properties of Carbon Nanotubes From Molecular-Mechanics Simulations
,”
Phys. Rev. B
0163-1829,
69
, p.
235406
.
8.
Wang
,
Y.
,
Wang
,
X. X.
,
Ni
,
X. G.
, and
Wu
,
H. A.
, 2005, “
Simulation of the Elastic Response and the Buckling Modes of Single-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
32
, pp.
141
146
.
9.
Liew
,
K. M.
,
Wong
,
C. H.
, and
Tan
,
M. J.
, 2006, “
Tensile and Compressive Properties of Carbon Nanotube Bundles
,”
Acta Mater.
1359-6454,
54
, pp.
225
231
.
10.
Liew
,
K. M.
,
He
,
X. Q.
, and
Wong
,
C. H.
, 2004, “
On the Study of Elastic and Plastic Properties of Multi-Walled Carbon Nanotubes Under Axial Tension Using Molecular Dynamics Simulation
,”
Acta Mater.
1359-6454,
52
, pp.
2521
2527
.
11.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
12.
He
,
X. Q.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for van der Waals Interaction
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
303
326
.
13.
Kitipornchai
,
S.
,
He
,
X. Q.
, and
Liew
,
K. M.
, 2005, “
Buckling Analysis of Triple-Walled Carbon Nanotubes Embedded in an Elastic Matrix
,”
J. Appl. Phys.
0021-8979,
97
, p.
114318
.
14.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
, 2004, “
The Atomic-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1849
1864
.
15.
Liu
,
B.
,
Jiang
,
H.
,
Huang
,
Y.
,
Qu
,
S.
,
Yu
,
M. F.
, and
Hwang
,
K. C.
, 2005, “
Atomic-Scale Finite Element Method in Multiscale Computation With Applications to Carbon Nanotubes
,”
Phys. Rev. B
0163-1829,
72
, p.
035435
.
16.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984,
14
, pp.
783
802
.
17.
Girifalco
,
L. A.
,
Hodak
,
M.
, and
Lee
,
R. S.
, 2000, “
Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential
,”
Phys. Rev. B
0163-1829,
62
, pp.
13104
13110
.
18.
ABAQUS, ABAQUS
Theory Manual and Users Manual
, 2002, version 6.2, Hibbit,
Karlsson and Sorensen Inc.
,
Pawtucket, RI
.
19.
Menon
,
M.
,
Richter
,
E.
, and
Subbaswamy
,
K. R.
, 1996, “
Structural and Vibrational Properties of Fullerenes and Nanotubes in a Nonorthogonal Tight-Binding Scheme
,”
J. Chem. Phys.
0021-9606,
104
, pp.
5875
5882
.
20.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, 1996, “
VMD—Visual Molecular Dynamics
,”
J. Mol. Graphics
0263-7855,
14
, pp.
33
38
.
21.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
22.
Zhou
,
X.
,
Zhou
,
J. J.
, and
Ou-Yang
,
Z. C.
, 2000, “
Strain Energy and Young’s Modulus of Single-Wall Carbon Nanotubes Calculated From Electronic Energy-Band Theory
,”
Phys. Rev. B
0163-1829,
62
, pp.
13692
13696
.
23.
Kundin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
, 2001, “
C2F, BN, and C Nanoshell Elasticity From Ab Initio Computations
,”
Phys. Rev. B
0163-1829,
64
, p.
235406
.
24.
Tu
,
Z. C.
, and
Ou-Yang
,
Z. C.
, 2002, “
Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young’s Moduli Dependent on Layer Number
,”
Phys. Rev. B
0163-1829,
65
, p.
233407
.
You do not currently have access to this content.