In this paper, we present a fracture-mechanics based model, the so-called bridged crack model (Carpinteri, A., 1981, “A Fracture Mechanics Model for Reinforced Concrete Collapse,” Proc. of IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft, I.A.B.S.E., Zürich, pp. 17–30; Carpinteri, A., 1984, “Stability of Fracturing Process in R.C. Beams,” J. Struct. Engng. (A.S.C.E.), 110, pp. 544–558) for the analysis of brittle matrix composites with discontinuous ductile reinforcements under the condition of repeated bending loading. In particular, we address the case of composites with very high number of reinforcements (i.e., fiber-reinforced composites, rather than conventionally reinforced concrete). With this aim, we propose a new iterative procedure and compare it to the algorithm recently proposed by Carpinteri, Spagnoli, and Vantadori (2004, “A Fracture Mechanics Model for a Composite Beam with Multiple Reinforcements Under Cyclic Bending,” Int. J. Solids Struct., 41, pp. 5499–5515), showing the advantages in terms of computational efficiency. Furthermore, we analyze the combined effects of crack length, brittleness number, and fiber number on the cyclic behavior of the composite beam, showing the conditions enhancing the energy dissipation in the composite system. Eventually, we analyze crack propagation and propose, consistently with the model premises, a fracture-mechanics-based crack propagation criterion that allows one to simulate cyclic bending tests under the fixed grip condition.

1.
Carpinteri
,
A.
, 1981, “
A Fracture Mechanics Model for Reinforced Concrete Collapse
,”
Proc. of the IABSE Colloquium on Advanced Mechanics of Reinforced Concrete
, Delft,
I.A.B.S.E.
, Zürich, pp.
17
30
.
2.
Carpinteri
,
A.
, 1984, “
Stability of Fracturing Process in R.C. Beams
,”
J. Struct. Eng.
0733-9445,
110
, pp.
544
558
.
3.
Carpinteri
,
An.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
, 2004, “
A Fracture Mechanics Model for a Composite Beam With Multiple Reinforcements Under Cyclic Bending
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
5499
5515
.
4.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
5.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
6.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
, 1976, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
0008-8846,
6
, pp.
773
782
.
7.
Petersson
,
P. E.
, 1981, “
Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials
,” Ph.D. thesis, Lund. Institute of Technology, Lund, Denmark.
8.
Hillerborg
,
A.
, 1980, “
Analysis of Fracture by Means of the Fictitious Crack Model, Particularly for Fibre Reinforced Concrete
,”
Int. J. Cem. Comp.
,
2
, pp.
177
184
.
9.
Carpinteri
,
A.
, 1989, “
Cusp Catastrophe Interpretation of Fracture Instability
,”
J. Mech. Phys. Solids
0022-5096,
37
, pp.
567
582
.
10.
Carpinteri
,
A.
, 1985, “
Interpretation of the Griffith Instability as a Bifurcation of the Global Equilibrium
,”
Application of Fracture Mechanics to Cementitious Composites (Proc. of a NATO Advanced Research Workshop, Evanston, IL, 1984)
,
S. P.
Shah
, ed.,
Martinus Nijhoff
, Dordrecht, pp.
287
316
.
11.
Carpinteri
,
A.
, ed., 1999,
Nonlinear Crack Models for Nonmetallic Materials
,
Kluwer
, Dordrecht.
12.
Shah
,
S. P.
, 1988, “
Fracture Toughness of Cement-Based Materials
,”
Mater. Struct.
1359-5997,
21
, pp.
145
150
.
13.
Cotterell
,
B.
,
Paravasivam
,
P.
, and
Lam
,
K. Y.
, 1992, “
Modelling the Fracture of Cementitious Composites
,”
Mater. Struct.
1359-5997,
25
, pp.
14
20
.
14.
Li
,
V. C.
, and
Liang
,
E.
, 1986, “
Fracture Processes in Concrete and Fiber Reinforced Cementitious Composites
,”
J. Eng. Mech.
0733-9399,
112
, pp.
566
586
.
15.
Wecharatana
,
M.
, and
Shah
,
S. P.
, 1983 “
A Model for Prediction of Fracture Resistance of Fiber Reinforced Concrete
,”
Cem. Concr. Res.
0008-8846,
13
, pp.
819
829
.
16.
Visalvanich
,
K.
, and
Naaman
,
A. E.
, 1983, “
Fracture Model for Fiber Reinforced Concrete
,”
ACI J.
0002-8061
80
, pp.
128
138
.
17.
Ballarini
,
R.
,
Shah
,
S. P.
, and
Keer
,
L. M.
, 1984, “
Crack Growth in Cement Based Composites
,”
Eng. Fract. Mech.
0013-7944,
20
, pp.
433
445
.
18.
Mai
,
Y. W.
, 1985, “
Fracture Measurements for Cementitious Composites
,”
Application of Fracture Mechanics to Cementitious Composites (Proc. of a NATO Advanced Research Workshop
, Evanston, IL, 1984),
S. P.
Shah
, ed.,
Martinus Nijhoff
, Dordrecht, pp.
399
429
.
19.
Jenq
,
Y. S.
, and
Shah
,
S. P.
, 1985, “
A Two-Parameter Fracture Model for Concrete
,”
J. Eng. Mech.
0733-9399,
111
, pp.
1227
1241
.
20.
Foote
,
R. M. L.
,
Mai
,
Y. W.
, and
Cotterell
,
B.
, 1986, “
Crack Growth Resistance Curves in Strain-Softening Materials
,”
J. Mech. Phys. Solids
0022-5096,
6
, pp.
593
607
.
21.
Zhang
,
J.
, and
Li
,
V. C.
, 2004, “
Simulation of Crack Propagation in Fiber-Reinforced Concrete by Fracture Mechanics
,”
Cem. Concr. Res.
0008-8846,
34
, pp.
333
339
.
22.
Ruiz
,
G.
, 2001, “
Propagation of a Cohesive Crack Crossing a Reinforcement Layer
,”
Int. J. Fract.
0376-9429,
111
, pp.
265
282
.
23.
Erdogan
,
F.
, and
Joseph
,
P. F.
, 1987, “
Toughening of Ceramics Through Crack Bridging by Ductile Particles
,”
J. Mech. Phys. Solids
0022-5096,
35
, pp.
262
270
.
24.
Mai
,
Y. W.
, 1991, “
Fracture and Fatigue of Non-transformable Ceramics: The Role of Crack-Interface Bridging
,”
Fracture Processes in Concrete, Rock and Ceramics
,
J. G. M.
Van Mier
, ed.,
E.&F.N. Spon
, London, pp.
3
26
.
25.
Cox
,
B. N.
, 1991, “
Extrinsic Factors in the Mechanics of Bridged Cracks
,”
Acta Metall. Mater.
0956-7151,
39
, pp.
1189
1201
.
26.
Marshall
,
D. B.
,
Cox
,
B. N.
, and
Evans
,
A. G.
, 1985, “
The Mechanics of Matrix Cracking in Brittle Matrix Fiber Composites
,”
Acta Metall.
0001-6160,
33
, pp.
2013
2021
.
27.
Marshall
,
D. B.
, and
Cox
,
B. N.
, 1987, “
Tensile Fracture of Brittle-Matrix Composites: Influence of Fiber Strength
,”
Acta Metall.
0001-6160
35
, pp.
2607
2619
.
28.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 1986, “
Matrix Fracture in Fiber-Reinforced Ceramics
,”
J. Mech. Phys. Solids
0022-5096,
34
, pp.
167
189
.
29.
Cox
,
B. N.
, and
Marshall
,
D. B.
, 1991, “
Crack Bridging in the Fatigue of Fibrous Composites
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
, pp.
847
861
.
30.
Cox
,
B. N.
, and
Marshall
,
D. B.
, 1991, “
Stable and Unstable Solutions for Bridged Cracks in Various Specimens
,”
Acta Metall. Mater.
0956-7151,
39
, pp.
579
589
.
31.
Ballarini
,
R.
, and
Muju
,
S.
, 1991, “
Stability Analysis of Bridged Cracks in Brittle Matrix Composites
,” ASME Paper No. 91-GT-094.
32.
Bosco
,
C.
, and
Carpinteri
,
A.
, 1992, “
Fracture Behavior of Beam Cracked Across Reinforcement
,”
Theor. Appl. Fract. Mech.
0167-8442,
17
, pp.
61
68
.
33.
Carpinteri
,
A.
, and
Bosco
,
C.
, 1995, “
Discontinuous Constitutive Response of Brittle Matrix Fibrous Composites
,”
J. Mech. Phys. Solids
0022-5096,
43
, pp.
261
274
.
34.
Carpinteri
,
A.
, and
Massabò
,
R.
, 1996, “
Bridged Versus Cohesive Crack in the Flexural Behavior of Brittle-Matrix Composites
,”
Int. J. Fract.
0376-9429,
81
, pp.
125
145
.
35.
Carpinteri
,
A.
, and
Massabò
,
R.
, 1997, “
Continuous vs Discontinuous Bridged-Crack Model for Fiber-Reinforced Materials in Flexure
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
2321
2338
.
36.
Carpinteri
,
A.
,
Ferro
,
G.
, and
Ventura
,
G.
, 2003, “
Bending Behaviour Simulations of Fibre Reinforced Beams With Rebars by Using the Bridged Crack Model
,”
Computational Modelling of Concrete Structures, Proc. of Euro-C 2003 Conference
, St. Johann im Pongau, Austria,
N.
Bićcanićc
,
R.
de Borst
,
H.
Mang
, and
G.
Meschke
, eds.,
Balkema
, pp.
707
716
.
37.
Carpinteri
,
A.
,
Ferro
,
G.
, and
Ventura
,
G.
, 2003, “
Size Effects on Flexural Response of Reinforced Concrete Elements with a Nonlinear Matrix
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
995
1013
.
38.
Carpinteri
,
A.
,
Ferro
,
G.
, and
Ventura
,
G.
, 2004, “
Double Brittle-to-Ductile Transition in Bending of Fibre Reinforced Concrete Beams With Rebars
,”
Int. J. Numer. Analyt. Meth. Geomech.
0363-9061,
28
, pp.
737
756
.
39.
Carpinteri
,
A.
, and
Carpinteri
,
An.
, 1984, “
Hysteretic Behavior of RC Beams
,”
J. Struct. Eng.
0733-9445,
110
, pp.
2073
2084
.
40.
Carpinteri
,
An.
, 1992, “
Reinforced Concrete Beam Behavior Under Cyclic Loadings
,”
Applications of Fracture Mechanics to Reinforced Concrete
,
A.
Carpinteri
, ed.,
Elsevier
, New York, pp.
547
578
.
41.
Carpinteri
,
A.
, and
Puzzi
,
S.
, 2003, “
Hysteretic Flexural Behaviour of Brittle Matrix Fibrous Composites: The Case of Two Fibers
,”
Proc. of 16th National (Italian) Congress of Theoretical and Applied Mechanics (AIMETA)
,
A.I.M.E.T.A.
, Ferrara, CD-ROM, File 102.
42.
Carpinteri
,
A.
, and
Puzzi
,
S.
, 2004, “
The Bridged Crack Model for the Analysis of FRC Elements Under Repeated Bending Loading
,”
Fibre-Reinforced Concretes, Proc. of 6th RILEM Symposium on Fibre Reinforced Concrete
, Varenna, Italy,
R.I.L.E.M. Publications
S.a.r.l., Bagneux,
M.
Di Prisco
,
R.
Felicetti
, and
G. A.
Plizzari
, eds., pp.
767
776
.
43.
Carpinteri
,
An.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
, 2005, “
Mechanical Damage of Ordinary or Prestressed Reinforced Concrete Beams Under Cyclic Bending
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
1313
1328
.
44.
Tada
,
H.
,
Paris
,
P.
, and
Irwin
,
G.
, 1985,
The Stress Analysis of Cracks Handbook
,
Paris Productions
, St. Louis, MO (and Del Research Corporation, 1963).
45.
Murakami
,
Y.
, 1987,
Stress Intensity Factors Handbook
,
Pergamon Press
, Oxford.
46.
Paris
,
P. C.
, and
Erdogan
,
F.
, 1963, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
0021-9223,
85
, pp.
528
534
.
47.
Matsumoto
,
T.
, and
Li
,
V. C.
, 1999, “
Fatigue Life Analysis of Fiber Reinforced Concrete With a Fracture Mechanics Based Model
,”
CRC Crit. Rev. Solid State Mater. Sci.
1040-8436,
21
, pp.
249
261
.
48.
Reis
,
J. M. L.
, and
Ferreira
,
A. J. M.
, 2003, “
Fracture Behaviour of Glass Fiber Reinforced Polymer Concrete
,”
Polym. Test.
0142-9418,
22
, pp.
149
153
.
You do not currently have access to this content.