A new one-equation subgrid scale (SGS) model that makes use of the transport equation for the SGS kinetic energy (kSGS) to calculate a representative velocity scale for the SGS fluid motion is proposed. In the kSGS transport equation used, a novel approach is developed for the calculation of the rate of dissipation of the SGS kinetic energy (ε). This new approach leads to an analytical computation of ε via the assumption of a form for the energy spectrum. This introduces a more accurate representation of the dissipation term, which is then also used for the calculation of a representative length scale for the SGS based on their energy content. Therefore, the SG length scale is not associated simply with the grid resolution or the largest of the SGS but with a length scale representative of the overall SGS energy content. The formulation of the model is presented in detail, and the new approach is tested on a series of channel flow test cases with Reynolds number based on friction velocity varying from 180 to 1800. The model is compared with the Smagorinsky model (1963, “General Circulation Experiments With the Primitive Equations: 1. The Basic Experiment,” Mon. Weather Rev., 91, pp. 90–164) and the one-equation model of Yoshizawa and Horiuti (1985, “A Statistically-Derived Subgrid Scale Kinetic Energy Model for the Large Eddy Simulation of Turbulent Flows,” J. Phys. Soc. Jpn., 54(8), pp. 2834–2839). The results indicate that the proposed model can provide, on a given mesh, a more accurate representation of the SG scale effects.

1.
Horiuti
,
K.
, 1985, “
Large Eddy Simulation of Turbulent Channel Flow by One-Equation Modeling
,”
J. Phys. Soc. Jpn.
0031-9015,
54
(
8
), pp.
2855
2865
.
2.
Ghosal
,
S.
,
Lund
,
T.
,
Moin
,
P.
, and
Akselvoll
,
K.
, 1995, “
A Dynamic Localization Model for Large Eddy Simulation of Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
286
, pp.
229
255
.
3.
Menon
,
S.
, and
Kim
,
W. W.
, 1996, “
High Reynolds Number Flow Simulations Using a Localized Dynamic Subgrid-Scale Model
,” Paper No. AIAA-96-0425.
4.
Krajnovic
,
S.
,
Mueller
,
D.
, and
Davidson
,
L.
, 1999, “
Comparison of Two One-Equation Subgrid Models in Recirculating Flows
,”
Direct and Large Eddy Simulation
,
P.
Voke
,
N. D.
Sandham
, and
L.
Kleiser
, eds.,
Kluwer
,
Dordrecht
, Vol.
3
, pp.
63
74
.
5.
Davidson
,
L.
, 1997, “
LES of Recirculating Flow Without Any Homogeneous Direction: A Dynamic One-Equation Subgrid Model
,”
Second International Symposium on Turbulence, Heat and Mass Transfer
,
K.
Hanjalic
and
T. W. J.
Peeters
, eds.,
Delft University
,
Delft
, pp.
481
490
.
6.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
(
7
), pp.
1760
1765
.
7.
Piomelli
,
U.
, 1993, “
High Reynolds Number Calculations Using the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids A
0899-8213,
5
, pp.
1484
1490
.
8.
Piomelli
,
U.
, and
Junhui
,
L.
, 1995, “
Large Eddy Simulation of Rotating Channel Flow Using a Localized Dynamic Model
,”
Phys. Fluids
1070-6631,
7
, pp.
839
848
.
9.
Kajishima
,
T.
, and
Nomachi
,
T.
, 2006, “
One-Equation Subgrid Scale Model Using Dynamic Procedure for the Energy Production
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
368
373
.
10.
Yoshizawa
,
A.
, and
Horiuti
,
K.
, 1985, “
A Statistically-Derived Subgrid Scale Kinetic Energy Model for the Large Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
0031-9015,
54
(
8
), pp.
2834
2839
.
11.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, England
.
12.
Voke
,
P. R.
, 1994, “
Low Reynolds Number Subgrid-Scale Models
,” Department of Mechanical Engineering, University of Surrey, Technical Report.
13.
Chandrasekar
,
S.
, 1949, “
On Heisenberg’s Elementary Theory of Turbulence
,”
Proc. R. Soc. London, Ser. A
1364-5021,
200
, pp.
20
33
.
14.
Kovasznay
,
L. S. G.
, 1948, “
Spectrum of Locally Isotropic Turbulence
,”
J. Aeronaut. Sci.
0095-9812,
15
, pp.
745
753
.
15.
Pao
,
Y.-H.
, 1965, “
Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers
,”
Phys. Fluids
0031-9171,
8
, pp.
1063
1075
.
16.
Townsend
,
A. A.
, 1951, “
On the Fine-Scale Structure of Turbulence
,”
Proc. R. Soc. London, Ser. A
1364-5021,
208
, pp.
534
542
.
17.
Cook
,
M.
, 1997,
Flight Dynamics Principles
,
Arnold
,
London
.
18.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 2001,
Numerical Recipies in Fortran 77: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
,
Cambridge, England
.
19.
Dejoan
,
A.
, and
Schiestel
,
R.
, 2002, “
LES of Unsteady Turbulence Via One-Equation Subgrid-Scale Transport Model
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
398
412
.
20.
Page
,
G. J.
, 1999, Delta User’s Guide, Loughborough University, Department of Aeronautical and Automotive Engineering, UK, Release 2.1.
21.
Page
,
G. J.
,
Zhao
,
H.
, and
McGuirk
,
J. J.
, 2001, “
A Parallel Multi-Block Reynolds-Averaged Navier-Stokes Method for Propulsion Installation Applications
,”
Proceedings of the 12th International Symposium on Air Breathing Engines
,
Melbourne
, Vol.
1
, pp.
864
876
.
22.
Wu
,
X.
,
Tristanto
,
I. H.
,
Page
,
G. J.
, and
McGuirk
,
J. J.
, 2005, “
Influence of Nozzle Modelling in LES of Turbulent Free Jets
,” Paper No. AIAA-2005-2883.
23.
Williamson
,
J. H.
, 1980, “
Low-Storage Runge-Kutta Schemes
,”
J. Comput. Phys.
0021-9991,
35
, pp.
48
56
.
24.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations: 1. The Basic Experiment
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
90
164
.
25.
Piomelli
,
U.
,
Zang
,
T. A.
,
Speziale
,
C. G.
, and
Hussaini
,
M. Y.
, 1990, “
On the Large Eddy Simulation of Transitional Wall-Bounded Flows
,”
Phys. Fluids A
0899-8213,
2
(
2
), pp.
257
265
.
26.
Veloudis
,
I.
, 2006, “
A Study of Subgrid Scale Modelling and Inflow Boundary Conditions for Large Eddy Simulation of Wall-Bounded Flows
,” Ph.D. thesis, Loughborough University.
27.
Yoshizawa
,
A.
,
Kobayashi
,
K.
,
Kobayashi
,
T.
, and
Taniguchi
,
N.
, 2000, “
A Non-Equilibrium Fixed-Parameter Subgrid-Scale Model Obeying the Near-Wall Asymptotic Constraint
,”
Phys. Fluids
1070-6631,
12
(
9
), pp.
2338
2344
.
28.
Inagi
,
M.
,
Kondoh
,
T.
, and
Nagano
,
Y.
, 2005, “
A Mixed-Time-Scale SGS Model With Fixed Model-Parameters for Practical LES
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
1
13
.
29.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
30.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct Numerical Simulation of Turbulent Channel Flow up to Reτ=590
,”
Phys. Fluids
1070-6631,
11
(
4
), pp.
943
945
.
31.
Iwamoto
,
K.
,
Suzuki
,
Y.
, and
Kasagi
,
N.
, 2002, “
Database of Fully Developed Channel Flow
,” Department of Mechanical Engineering, The University of Tokyo, THTLAB Internal Report No. ILR-0201.
32.
Shah
,
K. B.
, and
Ferziger
,
J. H.
, 1995, “
A New Non-Eddy Viscosity Subgrid-Scale Model and Its Application to Channel Flow
,”
Annual Research Briefs
, Center of Turbulence Research.
33.
Wei
,
T.
, and
Willmarth
,
W. W.
, 1989, “
Reynolds-Number Effects on the Structure of a Turbulent Channel Flow
,”
J. Fluid Mech.
0022-1120,
204
, pp.
57
95
.
34.
Dean
,
R. B.
, 1978, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow
,”
ASME J. Fluids Eng.
0098-2202,
100
, pp.
215
233
.
35.
Fureby
,
C.
,
Alin
,
N.
,
Wilkstrom
,
N.
,
Menon
,
S.
,
Svanstedt
,
N.
, and
Persson
,
L.
, 2004, “
Large Eddy Simulation of High-Reynolds-Number Wall-Bounded Flows
,”
AIAA J.
0001-1452
42
(
3
), pp.
457
468
.
36.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
, 1990, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
0899-8213,
4
, pp.
765
777
.
37.
Sagaut
,
P.
, 2003,
Large Eddy Simulation for Incompressible Flows: An Introduction
: 2nd ed.,
Springer
,
New York
.
You do not currently have access to this content.