Abstract

The problem of elastic stress and magnetic field concentration near the vertex of a compound wedge is modeled and investigated. The wedge is made of two isotropic dielectric soft-ferromagnetic materials and is immersed in a static magnetic field. The technique of eigenfunction series expansion is applied on the components of the elastic displacement field and the induced magnetic potentials near the vertex. It is shown that in this region, the magnetic susceptibility and the applied magnetic field have a strong influence on the elastic stress and magnetic field concentration. The results are instrumental toward actively controlling the stress concentration intensity via the applied magnetic field.

References

1.
Barnett
,
D. M.
,
Rawal
,
S.
, and
Rummel
,
K.
, 2001, “
Multifunctional Structures for Advanced Spacecraft
,”
J. Spacecr. Rockets
0022-4650,
38
(
2
), pp.
226
230
.
2.
Noor
,
A. K.
, 2000, “
Structures Technology for Future Aerospace Systems
,”
Progress in Astronautics and Aeronautics
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
, Vol.
188
, Chap. 1, pp.
18
20
.
3.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
0021-8936,
19
, pp.
526
528
.
4.
Dempsey
,
J. P.
, and
Sinclair
,
G. B.
, 1981, “
On the Singular Behavior at the Vertex of a Bimaterial Wedge
,”
J. Elast.
0374-3535,
11
(
3
), pp.
317
327
.
5.
Lin
,
Y. Y.
, and
Sung
,
J. G.
, 1998, “
Stress Singularities at the Apex of a Dissimilar Anisotropic Wedge
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
454
463
.
6.
Hwu
,
C.
, and
Lee
,
W. J.
, 2004, “
Thermal Effect on the Singular Behavior of Multibonded Anisotropic Wedges
,”
J. Therm. Stresses
0149-5739,
27
, pp.
111
136
.
7.
Fil’shtinskii
,
L. A.
, and
Matvienko
,
T. S.
, 1999, “
Singularities of Physical Fields at the Apex of a Piezoceramic Wedge (Plane Strain)
,”
Int. Appl. Mech.
1063-7095,
35
(
3
), pp.
301
304
;
Fil’shtinskii
,
L. A.
, and
Matvienko
,
T. S.
,1999,
Prikl. Mekh.
0032-8243,
35
(
3
), pp.
89
92
.
8.
Pao
,
Y. W.
, and
Yeh
,
C. S.
, 1973, “
A Linear Theory for Soft Ferromagnetic Elastic Solids
,”
Int. J. Eng. Sci.
0020-7225,
11
, pp.
415
436
.
9.
Shindo
,
Y.
, 1978, “
The Linear Magnetoelastic Problem for Soft Ferromagnetic Elastic Solid With a Finite Crack
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
47
51
.
10.
Oates
,
G. C.
, 1974, “
Vector analysis
,”
Handbook of Applied Mathematics
,
C. E.
Pearson
, ed.,
Van Nostrand Reinhold
,
New York
, Chap. 3.
11.
Zadoyan
,
M.
, 1992,
Spatial Problems of the Plasticity Theory
,
Nauka
,
Moscow
, in Russian.
12.
Chobanyan
,
K. S.
, 1987,
Contact Stresses in Composite Bodies
,
Printing House of Academy of Science of Armenia
,
Yerevan
, in Russian.
13.
Mittra
,
R.
, and
Li
,
S. W.
, 1971,
Analytical Techniques in the Theory of Guided Waves
,
Macmillan
,
New York
, pp.
4
11
.
14.
Bozorth
,
R. M.
, 1953,
Ferromagnetism
,
Van Nostrand
,
New York
, Chaps. 1 and 3.
15.
Moon
,
F. C.
, 1984,
Magneto-Solid Mechanics
,
Wiley-Interscience
,
New York
, pp.
423
425
.
16.
Lin
,
T.
, 2002,
Numerical Methods
,
Class Notes, Fall Semester
,
Virginia Polytechnic Institute and State University, Department of Mathematics
,
Blacksburg, VA
, pp.
176
179
.
17.
MATHEMATICA®6,
Wolfram Research, Inc.
You do not currently have access to this content.