It is well-known that if one or a few components in a structure are of nonlinear properties, the whole structure will behave nonlinearly, and the nonlinear component is often the component where a fault or an abnormal condition occurs. Therefore it is of great significance to detect the position of nonlinear components in structures. Nonlinear output frequency response functions (NOFRFs) are a new concept proposed by the authors for the analysis of nonlinear systems in the frequency domain. The present study is concerned with investigating the NOFRFs of nonlinear one-dimensional chain type systems, which have been widely used to model many real life structures. A series of important properties of the NOFRFs of locally nonlinear one-dimensional chain type structures are revealed. These properties clearly describe the relationships between the NOFRFs of different masses in a one-dimensional chain type system, and allow effective methods to be developed for detecting the position of a nonlinear component in the system. The results are an extension of the authors’ previous research studies to a more general and practical case, and have considerable significance in fault diagnosis and location in engineering systems and structures.

1.
Duhamel
,
D.
,
Maceb
,
B. R.
, and
Brennan
,
M. J.
, 2006, “
Finite Element Analysis of the Vibrations of Waveguides and Periodic Structures
,”
J. Sound Vib.
0022-460X,
294
, pp.
205
220
.
2.
Luongo
,
A.
, and
Romeo
,
F.
, 2005, “
Real Wave Vectors for Dynamic Analysis of Periodic Structures
,”
J. Sound Vib.
0022-460X,
279
, pp.
309
325
.
3.
Romeo
,
F.
, and
Luongo
,
A.
, 2003, “
Vibration Reduction in Piecewise Bi-Coupled Periodic Structures
,”
J. Sound Vib.
0022-460X,
268
, pp.
601
615
.
4.
Wei
,
J.
, and
Petyt
,
M.
, 1997, “
A Method of Analyzing Finite Periodic Structures, Part 1: Theory and Examples
,”
J. Sound Vib.
0022-460X,
202
, pp.
555
569
.
5.
Mukherjee
,
S.
, and
Parthan
,
S.
, 1996, “
Normal Modes and Acoustic Response of Finite One- and Two-Dimensional Multi-Bay Periodic Panels
,”
J. Sound Vib.
0022-460X,
197
, pp.
527
545
.
6.
Yuan
,
J.
, and
Dickinson
,
S. M.
, 1995, “
On the Determination of Phase Constants for the Study of the Free Vibration of Periodic Structures
,”
J. Sound Vib.
0022-460X,
179
, pp.
369
383
.
7.
Sakellariou
,
J. S.
, and
Fassois
,
S. D.
, 2006, “
Stochastic Output Error Vibration-Based Damage Detection and Assessment in Structures Under Earthquake Excitation
,”
J. Sound Vib.
0022-460X,
297
, pp.
1048
1067
.
8.
Mead
,
D. J.
, 1996, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
0022-460X,
190
, pp.
495
524
.
9.
Chi
,
C. -C.
, and
Rosenberg
,
R. M.
, 1985, “
On Damped Non-Linear Dynamic Systems With Many Degrees of Freedom
,”
Int. J. Non-Linear Mech.
0020-7462,
20
, pp.
371
384
.
10.
Vakakis
,
A. F.
,
King
,
M. E.
, and
Pearlstein
,
A. J.
, 1994, “
Forced Localization in a Periodic Chain of Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
29
, pp.
429
447
.
11.
Royston
,
T. J.
, and
Singh
,
R.
, 1996, “
Periodic Response of Mechanical Systems With Local Non-Linearities Using an Enhanced Galerkin Technique
,”
J. Sound Vib.
0022-460X,
194
, pp.
243
263
.
12.
Chakraborty
,
G.
, and
Mallik
,
A. K.
, 2001, “
Dynamics of a Weakly Non-Linear Periodic Chain
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
375
389
.
13.
Marathe
,
A.
, and
Chatterjee
,
A.
, 2006, “
Wave Attenuation in Nonlinear Periodic Structures Using Harmonic Balance and Multiple Scales
,”
J. Sound Vib.
0022-460X,
289
, pp.
871
888
.
14.
Neild
,
S. A.
,
Mcfadden
,
P. D.
, and
Williams
,
M. S.
, 2001, “
A Discrete Model of Vibrating Beam Using Time-Stepping Approach
,”
J. Sound Vib.
0022-460X,
239
, pp.
99
121
.
15.
Zhu
,
H.
, and
Wu
,
M.
, 2002, “
The Characteristic Receptance Method for Damage Detection in Large Mono-Coupled Periodic Structures
,”
J. Sound Vib.
0022-460X,
251
, pp.
241
259
.
16.
Fassois
,
S. D.
, and
Sakellariou
,
J. S.
, 2007, “
Time-Series Methods for Fault Detection and Identification in Vibrating Structures
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
365
, pp.
411
448
.
17.
Tsyfansky
,
S. L.
, and
Beresnevich
,
V. I.
, 2000, “
Non-Linear Vibration Method for Detection of Fatigue Cracks in Aircraft Wings
,”
J. Sound Vib.
0022-460X,
236
, pp.
49
60
.
18.
Sundermeyer
,
J. N.
, and
Weaver
,
R. L.
, 1995, “
On Crack Identification and Characterization in a Beam by Nonlinear Vibration Analysis
,”
J. Sound Vib.
0022-460X,
183
, pp.
857
871
.
19.
Hillis
,
A. J.
,
Neild
,
S. A.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
, 2006, “
Global Crack Detection Using Bispectral Analysis
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
1515
1530
.
20.
Rivola
,
A.
, and
White
,
P. R.
, 1998, “
Bispectral Analysis of the Bilinear Oscillator With Application to the Detection of Fatigue Cracks
,”
J. Sound Vib.
0022-460X,
216
, pp.
889
910
.
21.
Peng
,
Z. K.
,
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2006, “
Analysis of Multi-Degree-of-Freedom Nonlinear Systems Using Nonlinear Output Frequency Response Functions
,” the University of Sheffield, Research Report No. 927.
22.
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2005, “
Energy Transfer Properties of Nonlinear Systems in the Frequency Domain
,”
Int. J. Control
0020-7179,
78
, pp.
345
362
.
23.
Peng
,
Z. K.
,
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2007, “
Nonlinear Output Frequency Response Functions for Multi-Input Nonlinear Volterra Systems
,”
Int. J. Control
0020-7179,
80
, pp.
843
855
.
24.
Sandberg
,
I. W.
, 1984, “
A Perspective on System Theory
,”
IEEE Trans. Circuits Syst.
0098-4094,
31
, pp.
88
103
.
25.
Boyd
,
S.
, and
Chua
,
L.
, 1985, “
Fading Memory and the Problem of Approximating Nonlinear Operators With Volterra Series
,”
IEEE Trans. Circuits Syst.
0098-4094,
32
, pp.
1150
1161
.
26.
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 1996, “
Output Frequency Characteristics of Nonlinear System
,”
Int. J. Control
0020-7179,
64
, pp.
1049
1067
.
27.
George
,
D. A.
, 1959, “
Continuous Nonlinear Systems
,” M.I.T. Research Laboratory of Electronics, Cambridge, MA, Technical Report No. 335.
28.
Billings
,
S. A.
, and
Peyton Jones
,
J. C.
, 1990, “
Mapping Nonlinear Integro-Differential Equations Into the Frequency Domain
,”
Int. J. Control
0020-7179,
52
, pp.
863
879
.
29.
Peyton Jones
,
J. C.
, and
Billings
,
S. A.
, 1989, “
A Recursive Algorithm for the Computing the Frequency Response of a Class of Nonlinear Difference Equation Models
,”
Int. J. Control
0020-7179,
50
, pp.
1925
1940
.
30.
Billings
,
S. A.
, and
Tsang
,
K. M.
, 1989, “
Spectral Analysis for Nonlinear System, Part I: Parametric Non-Linear Spectral Analysis
,”
Mech. Syst. Signal Process.
0888-3270,
3
, pp.
319
339
.
31.
Peng
,
Z. K.
,
Lang
,
Z. Q.
, and
Billings
,
S. A.
, 2007, “
Resonances and Resonant Frequencies for a Class of Nonlinear Systems
,”
J. Sound Vib.
0022-460X,
300
, pp.
993
1014
.
32.
Zhang
,
H.
, and
Billings
,
S. A.
, 1993, “
Analysing Non-Linear Systems in the Frequency Domain, I: The Transfer Function
,”
Mech. Syst. Signal Process.
0888-3270,
7
, pp.
531
550
.
33.
Billings
,
S. A.
, and
Zhang
,
H.
, 1994, “
Analysing Nonlinear Systems in the Frequency Domain, II: The Phase Response
,”
Mech. Syst. Signal Process.
0888-3270,
8
, pp.
45
62
.
34.
Worden
,
K.
,
Manson
,
G.
, and
Tomlinson
,
G. R.
, 1997, “
A Harmonic Probing Algorithm for the Multi-Input Volterra Series
,”
J. Sound Vib.
0022-460X,
201
, pp.
67
84
.
You do not currently have access to this content.