There exist several formulas for the global buckling of sandwich plates, each based on a specific set of assumptions and a specific plate or beam model. It is not easy to determine the accuracy and range of validity of these rather simple formulas unless an elasticity solution exists. In this paper, we present an elasticity solution to the problem of global buckling of wide sandwich panels (equivalent to sandwich columns) subjected to axially compressive loading (along the short side). The emphasis on this study is on the global (single-wave) rather than the wrinkling (multiwave) mode. The sandwich section is symmetric, and all constituent phases, i.e., the facings and the core, are assumed to be orthotropic. The buckling problem is formulated as an eigenboundary-value problem for differential equations, with the axial load being the eigenvalue. The complication in the sandwich construction arises due to the existence of additional “internal” conditions at the face-sheet/core interfaces. Results are produced for a range of geometric configurations, and these are compared with the different global buckling formulas in the literature.

1.
Allen
,
H. G.
, 1969,
Analysis and Design of Structural Sandwich Panels
,
Pergamon
,
Oxford
, Chap. 8.
2.
Bazant
,
Z. P.
, and
Cedolin
,
L.
, 1991,
Stability of Structures
,
Oxford University Press
,
New York
, pp.
30
35
.
3.
Engesser
,
F.
, 1891, “
Die Knickfestigheit gerader Stabe
,”
Zentralblatt der Bauverwaltung
,
11
, pp.
483
486
.
4.
Huang
,
H.
, and
Kardomateas
,
G. A.
, 2002, “
Buckling and Initial Postbuckling Behavior of Sandwich Beams Including Transverse Shear
,”
AIAA J.
0001-1452,
40
(
11
), pp.
2331
2335
.
5.
Haringx
,
J. A.
, 1948, “
On Highly Compressible Helical Springs and Rubber Rods, and Their Application for Vibration-Free Mountings, I
,”
Philips Res. Rep.
0031-7918,
3
, pp.
401
449
.
6.
Haringx
,
J. A.
, 1949, “
On Highly Compressible Helical Springs and Rubber Rods, and Their Application for Vibration-Free Mountings, II
,”
Philips Res. Rep.
0031-7918,
4
, pp.
49
80
.
7.
Hoff
,
N. J.
, and
Mautner
,
S. F.
, 1945, “
The Buckling of Sandwich-Type Panels
,”
J. Aeronaut. Sci.
0095-9812,
12
(
3
), pp.
285
297
.
8.
Ji
,
W.
, and
Waas
,
A. M.
, 2008, “
Wrinkling and Edge Buckling in Orthotropic Sandwich Beams
,”
J. Eng. Mech.
0733-9399,
134
, pp.
455
461
.
9.
Kardomateas
,
G. A.
, 1993, “
Buckling of Thick Orthotropic Cylindrical Shells Under External Pressure
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
195
202
.
10.
Kardomateas
,
G. A.
, 1993, “
Stability Loss in Thick Transversely Isotropic Cylindrical Shells Under Axial Compression
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
506
513
.
11.
Kardomateas
,
G. A.
, 1995, “
Bifurcation of Equilibrium in Thick Orthotropic Cylindrical Shells Under Axial Compression
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
43
52
.
12.
Kardomateas
,
G. A.
, and
Simitses
,
G. J.
, 2005, “
Bucking of Long Sandwich Cylindrical Shells Under External Pressure
,”
ASME J. Appl. Mech.
0021-8936,
72
(
4
), pp.
493
499
.
13.
Lekhnitskii
,
S. G.
, 1963,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden Day
,
San Francisco, CA
.
14.
Kardomateas
,
G. A.
, 2001, “
Elasticity Solutions for a Sandwich Orthotropic Cylindrical Shell Under External Pressure, Internal Pressure and Axial Force
,”
AIAA J.
0001-1452,
39
(
4
), pp.
713
719
.
15.
Kardomateas
,
G. A.
, 2005, “
Wrinkling of Wide Sandwich Panels/Beams With Orthotropic Phases by an Elasticity Approach
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
818
825
.
16.
Bazant
,
Z. P.
, 1971, “
A Correlation Study of Formulations of Incremental Deformation and Stability of Continuous Bodies
,”
ASME J. Appl. Mech.
0021-8936,
38
(
4
), pp.
919
928
.
17.
Bazant
,
Z. P.
, and
Beghini
,
A.
, 2006, “
Stability and Finite Strain of Homogenized Structures Soft in Shear: Sandwich or Fiber Composites, and Layered Bodies
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1571
1593
.
18.
Bažant
,
Z. P.
, and
Beghini
,
A.
, 2004, “
Sandwich Buckling Formulas and Applicability of Standard Computational Algorithm for Finite Strain
,”
Composites, Part B
1359-8368,
35
, pp.
573
581
.
19.
Novozhilov
,
V. V.
, 1953,
Foundations of the Nonlinear Theory of Elasticity
,
Graylock
,
Rochester, NY
.
20.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1989,
Numerical Recipes
,
Cambridge University Press
,
Cambridge, MA
.
21.
Goens
,
E.
, 1931, “
Uber die Bestimmung des Elastizitätsmoduls von Stäben mit Hilfe von Biegungsschwingungen
,”
Ann. Phys.
0003-3804,
403
, pp.
649
678
.
22.
Reissner
,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
0021-8936,
12
, pp.
A69
A77
.
You do not currently have access to this content.