Because of the large aspect ratio of its length to radius and the large surface area to volume ratio, the nanowire is highly flexural and susceptible to the adhesion influence. The bending deflection of nanowire and its adhesion effect make the previous indentation models inappropriate for the nanowire indentation test. In this paper, a new model incorporating the nanowire bending deflection, loading symmetry/asymmetry, and adhesion effect is presented and compared with the previous models. Because of the bending deflection of the flexural nanowire, the nanowire may lift-off/separate from its contacting elastic medium and the localized contact effects may thus be induced. The localized contact effects as predicted by this new model can cause the relatively large deflection difference of the nanowire in test as compared with those obtained by the previous models, which impacts directly and significantly on the interpretation of the indentation experimental data. The nanowire is modeled as a cylinder/beam and the indentation force is modeled as a concentrated force. The elastic medium is modeled as an elastic foundation. The elastic foundation behaves as a linear spring in nonadhesive Hertz contact and as a nonlinear softening spring in adhesive contact. In the Hertz contact, due to lift-off, the contact length is independent of the load. However, in adhesive contact, larger load results in smaller contact length. Unlike the Hertz contact in which lift-off always occurs when adhesion force is too large for bending cylinder to overcome, there is no lift-off for cylinder and the full contact scenario is thus formed.

1.
Park
,
H. S.
, and
Klein
,
P. A.
, 2008, “
Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
3144
3166
.
2.
Feng
,
G.
,
Nix
,
W. D.
,
Yoon
,
Y.
, and
Lee
,
C. J.
, 2006, “
A Study of the Mechanical Properties of Nanowires Using Nanoindentation
,”
J. Appl. Phys.
0021-8979,
99
, p.
074304
.
3.
Wang
,
Z. L.
, 2000, “
Characterizing the Structure and Properties of Individual Wire-Like Nanoentities
,”
Adv. Mater.
0935-9648,
12
, pp.
1295
1298
.
4.
Jing
,
G. Y.
,
Duan
,
H. L.
,
Sun
,
X. M.
,
Zhang
,
Z. S.
,
Xu
,
J.
,
Li
,
Y. D.
,
Wang
,
J. X.
, and
Yu
,
D. P.
, 2006, “
Surface Effect on Elastic Properties of Silver Nanowire: Contact Atomic-Force Microscopy
,”
Phys. Rev. B
0556-2805,
73
, pp.
235409
.
5.
Salvetat
,
J.
,
Briggs
,
G. A. D.
,
Bonard
,
J.
,
Bacsa
,
R. R.
,
Kulik
,
A. J.
,
Stökli
,
T.
,
Burham
,
N. A.
, and
Forró
,
L.
, 1999, “
Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes
,”
Phys. Rev. Lett.
0031-9007,
82
, pp.
944
947
.
6.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
0884-2914,
7
, pp.
1564
1583
.
7.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 2004, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
0884-2914,
19
, pp.
3
20
.
8.
Zhu
,
Y.
,
Ke
,
C.
, and
Espinosa
,
H. D.
, 2007, “
Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures
,”
Exp. Mech.
0014-4851,
47
, pp.
7
24
.
9.
Castillo
,
J.
, and
Barber
,
J. R.
, 1997, “
Lateral Contact of Slender Prismatic Bodies
,”
Proc. R. Soc. London, Ser. A
0950-1207,
453
, pp.
2397
2412
.
10.
Yu
,
M.-F.
,
Kowalewski
,
T.
, and
Ruoff
,
R. S.
, 2000, “
Investigation of the Radial Deformability of Individual Carbon Nanotubes Under Controlled Indentation Force
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
1456
1459
.
11.
Keer
,
L. M.
,
Dundurs
,
J.
, and
Tsai
,
K. C.
, 1972, “
Problems Involving a Receding Contact Between a Layer and a Half Space
,”
ASME J. Appl. Mech.
0021-8936,
39
, pp.
1115
1120
.
12.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, Chaps. 4 and 5.
13.
Pu
,
S. L.
, and
Hussain
,
M. A.
, 1970, “
Note on the Unbonded Contact Between Plates and an Elastic Half Space
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
859
861
.
14.
Gladwell
,
G. M.
, 1976, “
On Some Unbonded Contact Problems in Plane Elasticity Theory
,”
ASME J. Appl. Mech.
0021-8936,
43
, pp.
263
267
.
15.
Weitsman
,
Y.
, 1969, “
On the Unbonded Contact Between Plates and an Elastic Half Space
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
505
509
.
16.
Weitsman
,
Y.
, 1970, “
On Foundations That Reacts in Compression Only
,”
ASME J. Appl. Mech.
0021-8936,
37
, pp.
1019
1030
.
17.
Weitsman
,
Y.
, 1972, “
A Tensionless Contact Between a Beam and an Elastic Half-Space
,”
Int. J. Eng. Sci.
0020-7225,
10
, pp.
73
81
.
18.
Ratwani
,
M.
, and
Erdogan
,
F.
, 1973, “
On the Plane Contact Problem for a Frictionless Elastic Layer
,”
Int. J. Solids Struct.
0020-7683,
9
, pp.
921
936
.
19.
Yang
,
W.
,
Wang
,
H.
, and
Huang
,
Y.
, 2005, “
Abnormal Tribological Behavior of Multiwalled Nanotube Rafts. Part I: Aligned Rafts
,”
ASME J. Eng. Mater. Technol.
0094-4289,
127
, pp.
383
392
.
20.
Ghatak
,
A.
,
Mahadevan
,
L.
, and
Chaudhury
,
M. K.
, 2005, “
Measuring the Work of Adhesion Between a Soft Confined Film and a Flexible Plate
,”
Langmuir
0743-7463,
21
, pp.
1277
1281
.
21.
Ghatak
,
A.
,
Chaudhury
,
M. K.
,
Shenoy
,
V.
, and
Sharma
,
A.
, 2000, “
Menicus Instability in a Thin Elastic Film
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
4329
4332
.
22.
Ghatak
,
A.
,
Mahadevan
,
L.
,
Chung
,
J. Y.
,
Chaudhury
,
M. K.
, and
Shenoy
,
V.
, 2004, “
Peeling From a Biomimetically Patterned Thin Elastic Film
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
, pp.
2725
2735
.
23.
Kendall
,
K.
, 1994, “
Adhesion: Molecules and Mechanics
,”
Science
0036-8075,
263
, pp.
1720
1725
.
24.
Chaudhury
,
M. K.
,
Weaver
,
T.
,
Hui
,
C. Y.
, and
Kramer
,
E. J.
, 1996, “
Adhesive Contact of Cylindrical Lens and a Flat Sheet
,”
J. Appl. Phys.
0021-8979,
80
, pp.
30
37
.
25.
Chen
,
S.
, and
Gao
,
H.
, 2006, “
Non-Slipping Adhesive Contact of an Elastic Cylinder on Stretched Substrate
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
211
228
.
26.
Zhang
,
Y.
, and
Murphy
,
K. D.
, 2004, “
Response of a Finite Beam in Contact With a Tensionless Foundation Under Symmetric and Asymmetric Loading
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
6745
6758
.
27.
Zhang
,
Y.
, 2008, “
Tensionless Contact of a Finite Beam Resting on Reissner Foundation
,”
Int. J. Mech. Sci.
0020-7403,
50
, pp.
1035
1041
.
28.
Kerr
,
A. D.
, 1964, “
Elastic and Viscoelastic Foundation Models
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
491
498
.
29.
Giannakopoulos
,
A. E.
, 2006, “
Elastic and Viscoelastic Indentation of Flat Surfaces by Pyramid Indentors
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
1305
1332
.
30.
Yang
,
F.
, and
Cheng
,
Y. T.
, 2009, “
Revisit of the Two-Dimensional Indentation Deformation of an Elastic Half-Space
,”
J. Mater. Res.
0884-2914,
24
, pp.
1976
1982
.
31.
Biot
,
M. A.
, 1937, “
Bending of an Infinite Beam on an Elastic Foundation
,”
ASME J. Appl. Mech.
0021-8936,
4
, pp.
1
7
.
32.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
, Chap. 2.
33.
Jiang
,
H.
,
Sun
,
Y.
,
Rogers
,
J. A.
, and
Huang
,
Y.
, 2008, “
Post-Buckling Analysis for the Precisely Controlled Buckling of Thin Film Encapsulated by Elastomeric Substrate
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
2014
2023
.
34.
Xiao
,
J.
,
Jiang
,
H.
,
Khang
,
D. -Y.
,
Wu
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
, 2008, “
Mechanics of Buckled Carbon Nanotubes on Elastomeric Substrate
,”
J. Appl. Phys.
0021-8979,
104
, p.
033543
.
35.
Xiao
,
J.
,
Ryu
,
S.
,
Huang
,
Y.
,
Hwang
,
K.
,
Paik
,
U.
, and
Rogers
,
J.
, 2010, “
Mechanics of Nanowire/Nanotubes In-Surface Buckling on Elastomeric Substrate
,”
Nanotechnology
0957-4484,
21
, p.
085708
.
36.
Khang
,
D.
,
Xiao
,
J.
,
Kocabas
,
C.
,
MacLaren
,
S.
,
Banks
,
T.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Rogers
,
J.
, 2008, “
Molecular Scale Buckling Mechanics in Individual Aligned Single-Wall Carbon Nanotubes on Elastomeric Substrate
,”
Nano Lett.
1530-6984,
8
, pp.
124
130
.
37.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
, pp.
139
147
.
38.
Giri
,
M.
,
Bousfield
,
D. B.
, and
Unertl
,
W. N.
, 2001, “
Dynamic Contacts on Viscoelastic Film: Work of Adhesion
,”
Langmuir
0743-7463,
17
, pp.
2973
2981
.
39.
Sun
,
Y.
,
Akhremitchev
,
B.
, and
Walker
,
G. C.
, 2004, “
Using the Adhesive Interaction Between Atomic Force Microscopy Tips and Polymer Surfaces to Measure the Elastic Modulus of Compliant Sample
,”
Langmuir
0743-7463,
20
, pp.
5837
5845
.
40.
Tabor
,
D.
, 1977, “
Surface Force and Surface Interactions
,”
J. Colloid Interface Sci.
0021-9797,
58
, pp.
2
13
.
41.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
, 1997, “
An Adhesion Map for the Contact of Elastic Spheres
,”
J. Colloid Interface Sci.
0021-9797,
192
, pp.
326
333
.
42.
Zhao
,
Y. -P.
,
Wang
,
L. S.
, and
Wang
,
T. X.
, 2003, “
Mechanics of Adhesion in MEMS—A Review
,”
J. Adhes. Sci. Technol.
0169-4243,
17
, pp.
519
546
.
43.
Zhang
,
Y.
, 2008, “
Transitions Between Different Contact Models
,”
J. Adhes. Sci. Technol.
0169-4243,
22
, pp.
699
715
.
44.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Chaps. 5 and 6.
45.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
, 1992,
Numerical Recipes in Fortran
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
, Chap. 9.
46.
Everall
,
P. R.
, and
Hunt
,
G. W.
, 2000, “
Mode Jumping in the Buckling of Struts and Plates: A Comparative Study
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
1067
1079
.
47.
Zhang
,
Y.
, and
Murphy
,
K.
, 2005, “
Secondary Buckling and Tertiary States of a Beam on a Non-Linear Elastic Foundation
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
795
805
.
You do not currently have access to this content.