We present a novel approach for nonlinear, three dimensional deformation of a rod that allows in-plane cross-sectional deformation. The approach is based on the concept of multiplicative decomposition, i.e., the deformation of a rod’s cross section is performed in two steps: pure in-plane cross-sectional deformation followed by its rigid motion. This decomposition, in turn, allows straightforward extension of the special Cosserat theory of rods (having rigid cross section) to a new theory allowing in-plane cross-sectional deformation. We then derive a complete set of static equilibrium equations along with the boundary conditions necessary for analytical/numerical solution of the aforementioned deformation problem. A variational approach to solve the relevant boundary value problem is also presented. Later we use symmetry arguments to derive invariants of the objective strain measures for transversely isotropic rods, as well as for rods with inbuilt handedness (hemitropy) such as DNA and carbon nanotubes. The invariants derived put restrictions on the form of the strain energy density leading to a simplified form of quadratic strain energy density that exhibits some interesting physically relevant coupling between the different modes of deformation.

1.
Antman
,
S. S.
, 1995,
Nonlinear Problems of Elasticity
,
Springer-Verlag
,
New York
.
2.
Bozec
,
L.
,
Van der Heijden
,
G. H. M.
, and
Horton
,
M.
, 2007, “
Collagen Fibrils: Nanoscale Ropes
,”
Biophys. J.
0006-3495,
92
, pp.
70
75
.
3.
Goriely
,
A.
, and
Tabor
,
M.
, 1997, “
Nonlinear Dynamics of Filaments I. Dynamic Instabilities
,”
Physica D
0167-2789,
105
, pp.
20
44
.
4.
Marko
,
J. F.
, and
Siggia
,
E. D.
, 1994, “
Bending and Twisting Elasticity of DNA
,”
Macromolecules
0024-9297,
27
, pp.
981
988
.
5.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2005, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
0021-9991,
209
(
1
), pp.
371
389
.
6.
Chandraseker
,
K.
,
Mukherjee
,
S.
,
Paci
,
J. T.
, and
Schatz
,
G. C.
, 2009, “
An Atomistic-Continuum Cosserat Rod Model of Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
932
958
.
7.
Gould
,
T.
, and
Burton
,
D. A.
, 2006, “
A Cosserat Rod Model With Microstructure
,”
New J. Phys.
1367-2630,
137
(
8
), pp.
1
17
.
8.
Rubin
,
M. B.
, 2000,
Cosserat Theories: Shells, Rods and Points
,
Kluwer Academic
,
The Netherlands
.
9.
Hodges
,
D. H.
, 1990, “
A Mixed variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
0020-7683,
26
, pp.
1253
1273
.
10.
Lee
,
E. H.
, 1981, “
Some Comments on Elastic-Plastic Analysis
,”
Int. J. Solids Struct.
0020-7683,
17
, pp.
859
872
.
11.
Goriely
,
A.
,
Robertson-Tessi
,
M.
,
Tabor
,
M.
, and
Vandiver
,
R.
, 2008, “
Elastic Growth Models
,”
Mathematical Modeling of Biosystems
,
Springer
,
Berlin
, p.
102
.
12.
Healey
,
T. J.
, and
Mehta
,
P. G.
, 2005, “
Straightforward Computation of Spatial Equilibria of Geometrically Exact Cosserat Rods
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
, pp.
949
965
.
13.
Hodges
,
D. H.
, 2003, “
Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams
,”
AIAA J.
0001-1452,
41
, pp.
1131
1137
.
14.
Hodges
,
D. H.
, 2009, “
Geometrically-Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams (Corrigendum)
,”
AIAA J.
0001-1452,
47
, pp.
1308
1309
.
15.
Kumar
,
A.
, and
Healey
,
T. J.
, 2010, “
A Generalized Computational Approach to Stability of Static Equilibria of Nonlinearly Elastic Rods in the Presence of Constraints
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
199
, pp.
1805
1815
.
16.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
79
116
.
17.
Gelfand
,
I. M.
, and
Fomin
,
S. M.
, 1991,
Calculus of Variations
,
Dover
,
New York
.
18.
Healey
,
T. J.
, 2008,
Lecture Notes on Nonlinear Elasticity: Rod Theory
(
Theoretical & Applied Mechanics
),
Cornell University
,
Ithaca, NY
.
19.
Healey
,
T. J.
, 2002, “
Material Symmetry and Chirality in Nonlinearly Elastic Rods
,”
Math. Mech. Solids
1081-2865,
7
, pp.
405
420
.
20.
Papadopoulos
,
C. M.
, 1999, “N
onlinear buckled states of Hemitropic Rods
,” Ph.D. thesis, Cornell University, Ithaca, NY.
21.
Healey
,
T. J.
, 2010, “
A Rigorous Derivation of Hemitropy in Nonlinearly Elastic Rods
,”
Discrete Contin. Dyn. Syst., Ser. B
1531-3492, accepted.
22.
Chandraseker
,
K.
, and
Mukherjee
,
S.
, 2006, “
Coupling of Extension and Twist in Single-Walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
73
(
2
), pp.
315
326
.
23.
Falk
,
W.
, and
James
,
R. D.
, 2006, “
Elasticity Theory for Self- Assembled Protein Lattices With Application to the Martensitic Phase Transition in Bacteriophage T4 Tail Sheath
,”
Phys. Rev. E
1063-651X,
73
, p.
011917
.
24.
Upmanyu
,
M.
,
Wang
,
H. L.
,
Liang
,
H. Y.
, and
Mahajan
,
R.
, 2008, “
Strain-Dependent Twist-Stretch Elasticity in Chiral Filaments
,”
J. R. Soc., Interface
1742-5689,
5
, pp.
303
310
.
25.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Guebelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
, 2003, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
429
442
.
26.
Coleman
,
B. D.
,
Dill
,
E. H.
, and
Swigon
,
D.
, 1995, “
On the Dynamics of Flexure and Stretch in Theory of Elastic Rods
,”
Arch. Ration. Mech. Anal.
0003-9527,
129
, pp.
147
174
.
27.
Pantano
,
A.
,
Boyce
,
M. C.
, and
Parks
,
D. M.
, 2004, “
Mechanics of Axial Compression of Single and Multi-Walled Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
279
289
.
28.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1991, “
A Geometrically-Exact Rod Model Incorporating Shear and Torsion-Warping Deformation
,”
Int. J. Solids Struct.
0020-7683,
27
, pp.
371
393
.
You do not currently have access to this content.