An X-ray microbeam study and a polycrystal finite element model of a 10×10μm2 section of a 1μm thick polycrystalline aluminum film on a silicon substrate are used to investigate the effect of microstructure on thermal stress variability. In the X-ray microbeam study, the grain orientations and deviatoric elastic strain field are measured at the subgrain level in the film during and after two thermal cycles. A finite element model of the observed grain structure is created and modeled with an elastoviscoplastic crystal constitutive model that incorporates film thickness and grain size effects as well as dislocation entanglement hardening. The experimental and simulation results are compared at both the film and subgrain scales. While the experiment and model agree fairly well at the film level, the experimental results show much greater elastic strain variability than the simulations. In considering the grain size effect, the experiment and model both predict a similar Hall–Petch coefficient, which is consistent with literature data on free standing aluminum thin films.

1.
Vinci
,
R. P.
, and
Vlassak
,
J. J.
, 1996, “
Mechanical Behavior of Thin Films
,”
Annu. Rev. Mater. Sci.
0084-6600,
26
, pp.
431
462
.
2.
Doerner
,
M.
,
Gardner
,
D.
, and
Nix
,
W.
, 1986, “
Plastic Properties of Thin Films on Substrates as Measured by Submicron Indentation Hardness and Substrate Curvature Techniques
,”
J. Mater. Res.
0884-2914,
1
, pp.
845
851
.
3.
Griffin
,
A. J.
, Jr.
,
Brotzen
,
F. R.
, and
Dunn
,
C.
, 1986, “
Hall–Petch Relation in Thin Film Metallizations
,”
Scr. Metall.
0036-9748,
20
, pp.
1271
1272
.
4.
Venkatraman
,
R.
, and
Bravman
,
J. C.
, 1992, “
Separation of Film Thickness and Grain Boundary Strengthening Effects in Al Thin Films on Si
,”
J. Mater. Res.
0884-2914,
7
, pp.
2040
2048
.
5.
Nix
,
W. D.
, 1989, “
Mechanical Properties of Thin Films
,”
Metall. Trans. A
0360-2133,
20
, pp.
2217
2245
.
6.
Thouless
,
M. D.
, 1995, “
Modeling the Development and Relaxation of Stresses in Thin Films
,”
Annu. Rev. Mater. Sci.
0084-6600,
25
, pp.
69
96
.
7.
Gerth
,
D.
,
Katzer
,
D.
, and
Krohn
,
M.
, 1992, “
Study of the Thermal Behavior of Thin Aluminum Alloy Films
,”
J. Appl. Phys.
0021-8979,
67
, pp.
1831
1844
.
8.
Kim
,
D. -K.
,
Nix
,
W. D.
,
Vinci
,
R. P.
,
Deal
,
M. D.
, and
Plummer
,
J. D.
, 2001, “
Study of the Effect of Grain Boundary Migration on Hillock Formation in Al Thin Films
,”
J. Appl. Phys.
0021-8979,
90
, pp.
781
787
.
9.
Sanchez
,
J. E.
, and
Arzt
,
E.
, Jr.
, 1992, “
Effects of Grain Orientation on Hillock Formation and Grain Growth in Aluminum Films on Silicon Substrates
,”
Scr. Metall. Mater.
0956-716X,
27
, pp.
285
290
.
10.
Schwarzer
,
R. A.
, and
Gerth
,
D.
, 1993, “
Effect of Grain Orientation on the Relaxation of Thermomechanical Stress and Hillock Growth in Al-1%Si Conductor Layers on Silicon Substrates
,”
J. Electron. Mater.
0361-5235,
22
, pp.
607
610
.
11.
Knorr
,
D. B.
, and
Rodbell
,
K. P.
, 1996, “
The Role of Texture in the Electromigration Behavior of Pure Aluminum Lines
,”
J. Appl. Phys.
0021-8979,
79
, pp.
2409
2417
.
12.
Zielinski
,
E. M.
,
Vinci
,
R. P.
, and
Bravman
,
J. C.
, 1995, “
Measurement of the Dependence of Stress and Strain on Crystallographic Orientation in Cu and Al Thin Films
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
356
, pp.
429
434
.
13.
Wang
,
P. -C.
,
Cargill
,
G. S.
, III
, and
Noyan
,
I. C.
, 1995, “
Strain Measurements and Laue Diffraction With Microbeams
,”
Applications of Synchrotron Radiation Techniques to Materials Science II Symposium
, Materials Research Society, Pittsburgh, PA.
14.
Chung
,
J.
, and
Ice
,
G.
, 1999, “
Automated Indexing for Texture and Strain Measurements With Broad-Bandpass X-Ray Microbeams
,”
J. Appl. Phys.
0021-8979,
86
, pp.
5249
5255
.
15.
Cargill
,
G. S.
, III
,
Moyer
,
L. E.
,
Wang
,
G.
,
Zhang
,
H.
,
Hu
,
C. -K.
,
Yang
,
W.
,
Larson
,
B. C.
, and
Ice
,
G. E.
, 2006, “
Thermal and Electromigration-Induced Strains in Polycrystalline Films and Conductor Lines: X-Ray Microbeam Measurements and Analysis
,”
AIP Conf. Proc.
0094-243X,
816
, pp.
303
309
.
16.
Freund
,
L. B.
, 1987, “
The Stability of a Dislocation Threading a Strained Layer on a Substrate
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
553
557
.
17.
Pant
,
P.
,
Schwarz
,
K. W.
, and
Baker
,
S. P.
, 2003, “
Dislocation Interactions in Thin FCC Metal Films
,”
Acta Mater.
1359-6454,
51
, pp.
3243
3258
.
18.
von Blanckenhagen
,
B.
,
Arzt
,
E.
, and
Gumbsch
,
P.
, 2004, “
Discrete Dislocation Simulations of Plastic Deformation in Metal Thin Films
,”
Acta Mater.
1359-6454,
52
, pp.
773
784
.
19.
Fertig
,
R.
, and
Baker
,
S. P.
, 2009, “
Simulation of Dislocations and Strength in Thin Films: A Review
,”
Prog. Mater. Sci.
0079-6425,
54
, pp.
874
908
.
20.
Povirk
,
G. L.
,
Mohan
,
R.
, and
Brown
,
S.
, 1995, “
Crystal Plasticity Simulations of Thermal Stresses in Thin-Film Aluminum Interconnects
,”
J. Appl. Phys.
0021-8979,
77
, pp.
598
606
.
21.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
0950-1207,
241
, pp.
376
396
.
22.
Yu
,
J. -S.
,
Maniatty
,
A. M.
, and
Knorr
,
D. B.
, 1997, “
Model for Predicting Thermal Stresses in Thin Polycrystalline Films
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
511
534
.
23.
Cho
,
J. -H.
,
Rollett
,
A. D.
, and
Oh
,
K. H.
, 2005, “
Determination of a Mean Orientation in Electron Backscatter Diffraction Measurements
,”
Metall. Mater. Trans. A
1073-5623,
36
, pp.
3427
3438
.
24.
Kocks
,
U. F.
, 1976, “
Laws for Work-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
76
85
.
25.
Ashby
,
M. F.
, 1970, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
1478-6435,
21
, pp.
399
424
.
26.
Frost
,
H. J.
, and
Ashby
,
M. F.
, 1982,
Deformation-Mechanism Maps
,
Pergamon
,
New York
.
27.
Bassani
,
J.
, and
Wu
,
T. -Y.
, 1991, “
Latent Hardening in Single Crystals II. Analytical Characterization and Predictions
,”
Proc. R. Soc. London, Ser. A
0950-1207,
435
, pp.
21
41
.
28.
Touloukian
,
Y. S.
,
Kirby
,
R. K.
,
Taylor
,
R. E.
, and
Desai
,
P. E.
, 1975,
Thermal Expansion, Metallic Elements, and Alloys
,
IFI/Plenum
,
New York
.
29.
Touloukian
,
Y. S.
,
Kirby
,
R. K.
,
Taylor
,
R. E.
, and
Lee
,
T. Y. R.
, 1977,
Thermal Expansion—Nonmetallic Solids
,
IFI/Plenum
,
New York
.
30.
Every
,
A. G.
, and
McCurdy
,
A. K.
, 1992. “
Group III: Crystal and Solid State Physics: Elastic Constants
,”
Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology
, Vol.
29A
,
D. F.
Nelson
, ed.,
Spring-Verlag
,
Berlin
, pp.
296
304
.
31.
Ortiz
,
M.
, and
Popov
,
E. P.
, 1985, “
Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
1561
1576
.
32.
Yang
,
C. -J.
, 2004, “
Modeling Electromigration and Stress Driven Diffusion in Thin Metallic Films
,” Ph.D. thesis, Rensselaer Polytechnic Institute.
33.
Chaudhari
,
P.
, 1974, “
Hillock Growth in Thin Films
,”
J. Appl. Phys.
0021-8979,
45
, pp.
4339
4345
.
34.
Thompson
,
C. V.
, 1993, “
The Yield Stress of Polycrystalline Thin Films
,”
J. Mater. Res.
0884-2914,
8
, pp.
237
238
.
You do not currently have access to this content.