It is proposed to investigate in this paper the damped vibrations of an incompressible liquid contained in a deformable tank. A linearized formulation describing the small movements of the system is presented. At first, a diagonal damping is introduced in the reduced equations of the hydroelastic sloshing problem. We obtain a nonclassically damped coupled system with a damping matrix that is not symmetric. Then, by projecting the system onto its complex modes, the frequency and time responses for different type of loads are built. A numerical application is illustrated on a test case.
References
1.
Chiu
, E.
, Schotté
, J.-S.
, Farhat
, C.
, and Ohayon
, R.
, 2011, “Flutter Analysis of a Wing-Store Configuration With Slosh Effects
,” Proceedings of the 30th International Forum of Aeroelasticity and Structural Dynamics
, Paris
, France
.2.
Abramson
, H. N.
, 1966, “The Dynamic Behaviour of Liquids in Moving Containers,” NASA Report No. SP-106.3.
Moiseyev
, N. N.
, and Rumyantsev
, V. V.
, 1968, Dynamic Stability of Bodies Containing Fluid
, (Springer-Verlag Applied Physics and Engineering
, Vol. 6
), Springer-Verlag, Berlin
.4.
Smith
, C. C.
, 1948, “The Effect of Fuel Sloshing on the Lateral Stability of a Free-Flying Airplane Model,” Langley Memorial Aeronautical Laboratory, Technical Report No. NACA RL L8C16.5.
Ibrahim
, R. A.
, 2005, Liquid Sloshing Dynamics: Theory and Applications
, Cambridge University Press
, Cambridge, England
.6.
Faltinsen
, O. M.
, and Timokha
, A. N.
, 2009, Sloshing
, Cambridge University Press
, Cambridge, England
.7.
El-Kamali
, M.
, 2010, “Ballottement des Liquides Avec Tension Superficielle: Etudes Dynamique et Statique,” Ph.D. thesis, Conservatoire National des Arts et Métiers, Paris, France.8.
El-Kamali
, M.
, Schotté
, J.-S.
, and Ohayon
, R.
, 2010, “Three Dimensional Modal Analysis of Sloshing Under Surface Tension
,” Int. J. Numer. Methods Fluids
, 65
, pp. 87
–105
.9.
Schotté
, J.-S.
, 2001, “Influence de la Gravité sur les Vibrations Linéaires d’une Structure Élastique Contenant un Liquide Incompressible,” Ph.D. thesis, Conservatoire National des Arts et Métiers, Paris, France.10.
Morand
, H. J.-P.
, and Ohayon
, R.
, 1995, Fluid-Structure Interaction: Applied Numerical Methods
, Wiley
, New York
.11.
Schotté
, J.-S.
, and Ohayon
, R.
, 2009, “Various Modelling Levels to Represent Internal Liquids in the Vibratory Analysis of Complex Structures
,” Comp. Methods Appl. Mech. Eng.
, 198
, pp. 1913
–1925
.12.
Schotté
, J.-S.
, and Ohayon
, R.
, 2005, “Incompressible Hydroelastic Vibrations: Finite Element Modelling of the Elastogravity Operator
,” Comput. Struct.
, 83
, pp. 209
–219
.13.
Caughey
, T.
, 1960, “Classical Normal Modes in Damped Linear Systems
,” J. Appl. Mech.
, 27
, pp. 269
–271
.14.
Henderson
, D. M.
, and Miles
, J. W.
, 1994, “Surface-Wave Damping in a Circular Cylinder With a Fixed Contact Line
,” J. Fluid Mech.
, 275
, pp. 285
–299
.15.
Johnson
, C. D.
, Kienholz
, D. A.
, and Rogers
, L. C.
, 2003, “Finite Element Prediction of Damping in Beams With Constrained Viscoelastic Layers
,” Shock Vib. Bull.
, 51
, pp. 71
–82
.16.
Tsai
, M. H.
, and Chang
, K. C.
, 2000, “A Study on Modal Strain Energy Method for Viscoelastically Damped Structures
,” Proceedings of the Twelfth World Conference on Earthquake Engineering
, Auckland, New Zealand
.17.
Anquez
, L.
, 1974, “Etude de l’Amortissement des Vibrations Dans un Liquide Peu Visqueux
,” Acta Astronaut.
, 1
, pp. 172
–184
.18.
Girault
, V.
, and Raviart
, P.-A.
, 1981, Finite Element Approximation of the Navier-Stokes Equations
, Springer-Verlag
, Berlin
.19.
Wang
, W.
, Li
, J.
, and Wang
, T.
, 2008, “Modal Analysis of Liquid Sloshing With Different Contact Line Boundary Conditions Using FEM
,” J. Sound Vib.
317
, pp. 739
–759
.20.
Kidambi
, R.
, 2009, “Capillary Damping of Inviscid Surface Waves in a Circular Cylinder
,” J. Fluid Mech.
, 627
, pp. 323
–340
.21.
Martel
, C.
, Nicolás
, J. A.
, and Vega
, J. M.
, 1998, “Surface-Wave Damping in a Brimful Circular Cylinder
,” J. Fluid Mech.
, 360
, pp. 213
–228
.22.
Miles
, J. W.
, and Henderson
, D. M.
, 1998, “A Note on Interior vs. Boundary-Layer Damping of Surface Waves in a Circular Cylinder
,” J. Fluid Mech.
, 364
, pp. 319
–323
.23.
Case
, K. M.
, and Parkinson
, W. C.
, 1957, “Damping of Surface Waves in an Incompressible Liquid
,” J. Fluid Mech.
, 2
, pp. 172
–184
.24.
Tisseur
, F.
, and Meerbergen
, K.
, 2001, “The Quadratic Eigenvalue Problem
,” SIAM Rev.
, 43
, pp. 235
–286
.25.
Saad
, Y.
, 1992, Numerical Methods for Large Eigenvalue Problems
, Halsted
, New York
.26.
Gohberg
, I.
, Lancaster
, P.
, and Rodman
, L.
, 1982, Matrix Polynomials
, Academic
, New York
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.