We present an extensive comparative study based on patient-specific fluid-structure interaction (FSI) modeling of cerebral aneurysms. We consider a total of ten cases, at three different locations, half of which ruptured. We use the stabilized space-time FSI technique developed by the Team for Advanced Flow Simulation and Modeling (TAFSM), together with a number of special techniques targeting arterial FSI modeling, which were also developed by the TAFSM. What we look at in our comparisons includes the wall shear stress, oscillatory shear index and the arterial-wall stress and stretch. We also investigate how simpler approaches to computer modeling of cerebral aneurysms perform compared to FSI modeling.
References
1.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2006, “Computer Modeling of Cardiovascular Fluid-Structure Interactions with the Deforming-Spatial-Domain/Stabilized Space-Time Formulation
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 1885
–1895
. 2.
Torii
, R.
Oshima
, M.
Kobayashi
, T.
Takagi
, K.
and Tezduyar
, T. E.
, 2006, “Fluid-Structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures
,” Comp. Mech.
, 38
, pp. 482
–490
. 3.
Bazilevs
, Y.
, Calo
, V. M.
, Zhang
, Y.
, and Hughes
, T. J. R.
, 2006, “Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow
,” Comput. Mech.
, 38
, pp. 310
–322
. 4.
Tezduyar
, T. E.
, Sathe
, S.
, Cragin
, T.
, Nanna
, B.
, Conklin
, B. S.
, Pausewang
, J.
, and Schwaab
, M.
, 2007, “Modeling of Fluid-Structure Interactions with the Space-Time Finite Elements: Arterial Fluid Mechanics
,” Int. J. Numer. Methods Fluids
, 54
, pp. 901
–922
.5.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2007, “Numerical Investigation of the Effect of Hypertensive Blood Pressure on Cerebral Aneurysm - Dependence of the Effect on the Aneurysm Shape
,” Int. J. Numer. Methods Fluids
, 54
, pp. 995
–1009
. 6.
Tezduyar
, T. E.
, Sathe
, S.
, Schwaab
, M.
, and Conklin
, B. S.
, 2008, “Arterial Fluid Mechanics Modeling with the Stabilized Space-Time Fluid-Structure Interaction Technique
,” Int. J. Numer. Methods Fluids
, 57
, pp. 601
–629
. 7.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2008, “Fluid-Structure Interaction Modeling of a Patient-Specific Cerebral Aneurysm: Influence of Structural Modeling
,” Comput. Mech.
, 43
, pp. 151
–159
. 8.
Bazilevs
, Y.
, Calo
, V. M.
, Hughes
, T. J. R.
, and Zhang
, Y.
, 2008, “Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,” Comput. Mech.
, 43
, pp. 3
–37
. 9.
Isaksen
, J. G.
, Bazilevs
, Y.
, Kvamsdal
, T.
, Zhang
, Y.
, Kaspersen
, J. H.
, Waterloo
, K.
, Romner
, B.
, and Ingebrigtsen
, T.
, 2008, “Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation
,” Stroke
, 39
, pp. 3172
–3178
. 10.
Maynard
, J. P.
, and Nithiarasu
, P.
, 2008, “A 1D Arterial Blood Flow Model Incorporating Ventricular Pressure, Aortic Valve and Regional Coronary Flow Using the Locally Conservative Galerkin (LCG) Method
,” Commun. Numer. Methods Eng.
, 24
, pp. 367
–417
. 11.
Tezduyar
, T. E.
, Schwaab
, M.
, and Sathe
, S.
, 2009, “Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) Technique
,” Comput. Methods Appl. Mech. Eng.
, 198
, pp. 3524
–3533
. 12.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2009, “Fluid-Structure Interaction Modeling of Blood Flow and Cerebral Aneurysm: Significance of Artery and Aneurysm Shapes
,” Comput. Methods Appl. Mech. Eng.
, 198
, pp. 3613
–3621
. 13.
Bazilevs
, Y.
, Gohean
, J. R.
, Hughes
, T. J. R.
, Moser
, R. D.
, and Zhang
, Y.
, 2009, “Patient-Specific Isogeometric Fluid-Structure Interaction Analysis of Thoracic Aortic Blood Flow due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,” Comput. Methods Appl. Mech. Eng.
, 198
, pp. 3534
–3550
. 14.
Bazilevs
, Y.
, Hsu
, M.-C.
, Benson
, D.
, Sankaran
, S.
, and Marsden
, A.
, 2009, “Computational Fluid-Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,” Comput. Mech.
, 45
, pp. 77
–89
. 15.
Takizawa
, K.
, Christopher
, J.
, Tezduyar
, T. E.
, and Sathe
, S.
, 2010, “Space-Time Finite Element Computation of Arterial Fluid-Structure Interactions With Patient-Specific Data
,” Int. J. Numer. Methods Biomed. Eng.
, 26
, pp. 101
–116
. 16.
Tezduyar
, T. E.
, Takizawa
, K.
, Moorman
, C.
, Wright
, S.
, and Christopher
, J.
, 2010, “Multiscale Sequentially-Coupled Arterial FSI Technique
,” Comput. Mech.
, 46
, pp. 17
–29
. 17.
Takizawa
, K.
, Moorman
, C.
, Wright
, S.
, Christopher
, J.
, and Tezduyar
, T. E.
, 2010, “Wall Shear Stress Calculations in Space-Time Finite Element Computation of Arterial Fluid-Structure Interactions
,” Comput. Mech.
, 46
, pp. 31
–41
. 18.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2010, “Influence of Wall Thickness on Fluid-Structure Interaction Computations of Cerebral Aneurysms
,” Int. J. Numer. Methods in Biomed. Eng.
, 26
, pp. 336
–347
. 19.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2010, “Role of 0D Peripheral Vasculature Model in Fluid-Structure Interaction Modeling of Aneurysms
,” Comput. Mech.
, 46
, pp. 43
–52
. 20.
Bazilevs
, Y.
, Hsu
, M.-C.
, Zhang
, Y.
, Wang
, W.
, Liang
, X.
, Kvamsdal
, T.
, Brekken
, R.
, and Isaksen
, J.
, 2010, “A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,” Comput. Mech.
, 46
, pp. 3
–16
. 21.
Bazilevs
, Y.
, Hsu
, M.-C.
, Zhang
, Y.
, Wang
, W.
, Kvamsdal
, T.
, Hentschel
, S.
, and Isaksen
, J.
, 2010, “Computational Fluid-Structure Interaction: Methods and Application to Cerebral Aneurysms
,” Biomech. Model. Mechanobiol.
, 9
, pp. 481
–498
. 22.
Bazilevs
, Y.
, del Alamo
, J. C.
, and Humphrey
, J. D.
, 2010, “From Imaging to Prediction: Emerging Non-Invasive Methods in Pediatric Cardiology
,” Prog. Pediatr. Cardiology
, 30
, pp. 81
–89
. 23.
Takizawa
, K.
, Moorman
, C.
, Wright
, S.
, Purdue
, J.
, McPhail
, T.
, Chen
, P. R.
, Warren
, J.
, and Tezduyar
, T. E.
, 2011, “Patient-Specific Arterial Fluid-Structure Interaction Modeling of Cerebral Aneurysms
,” Int. J. Numer. Methods Fluids
, 65
, pp. 308
–323
. 24.
Torii
, R.
, Oshima
, M.
, Kobayashi
, T.
, Takagi
, K.
, and Tezduyar
, T. E.
, 2011, “Influencing Factors in Image-Based Fluid-Structure Interaction Computation of Cerebral Aneurysms
,” Int. J. Numer. Methods Fluids
, 65
, pp. 324
–340
. 25.
Tezduyar
, T. E.
, Takizawa
, K.
, Brummer
, T.
, and Chen
, P. R.
, 2011, “Space-Time Fluid-Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms
,” Int. J. Numer. Methods Biomed. Eng.
27
, pp. 1665
–1710
.26.
Tezduyar
, T.
, Aliabadi
, S.
, Behr
, M.
, Johnson
, A.
, and Mittal
, S.
, 1993, “Parallel Finite-Element Computation of 3D Flows
,” Computer
, 26
, pp. 27
–36
. 27.
Behr
, M.
, Johnson
, A.
, Kennedy
, J.
, Mittal
, S.
, and Tezduyar
, T.
, 1993, “Computation of Incompressible Flows With Implicit Finite Element Implementations on the Connection Machine
,” Comput. Methods Appl. Mech. Eng.
, 108
, pp. 99
–118
. 28.
Aliabadi
S. K.
, and Tezduyar
, T. E.
, 1995, “Parallel Fluid Dynamics Computations in Aerospace Applications
,” Int. J. Numer. Methods Fluids
, 21
, pp. 783
–805
. 29.
Johnson
, A. A.
, and Tezduyar
, T. E.
, 1999, “Advanced Mesh Generation and Update Methods for 3D Flow Simulations
,” Comput. Mech.
, 23
, pp. 130
–143
. 30.
Behr
, M.
, and Tezduyar
, T.
, 1999, “The Shear-Slip Mesh Update Method
,” Comput. Methods Appl. Mech. Eng.
, 174
, pp. 261
–274
. 31.
Kalro
, V.
, and Tezduyar
, T. E.
, 2000, “A Parallel 3D Computational Method for Fluid-Structure Interactions in Parachute Systems
,” Comput. Methods Appl. Mech. Eng.
, 190
, pp. 321
–332
. 32.
Tezduyar
, T.
, and Osawa
, Y.
, 2001, “Fluid-Structure Interactions of a Parachute Crossing the Far Wake of an Aircraft
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 717
–726
. 33.
Stein
, K.
, Benney
, R.
, Tezduyar
, T.
, and Potvin
, J.
, 2001, “Fluid-Structure Interactions of a Cross Parachute: Numerical Simulation
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 673
–687
. 34.
Ohayon
, R.
, 2001, “Reduced Symmetric Models for Modal Analysis of Internal Structural-Acoustic and Hydroelastic-Sloshing Systems
,” Comput. Methods Appl. Mech. Eng.
, 190
, pp. 3009
–3019
. 35.
van Brummelen
, E. H.
, and de Borst
, R.
, 2005, “On the Nonnormality of Subiteration for a Fluid-Structure Interaction Problem
,” SIAM J. Sci. Comput. (USA)
, 27
, pp. 599
–621
. 36.
Tezduyar
, T. E.
, Sathe
, S.
, and Stein
, K.
, 2006, “Solution Techniques for the Fully-Discretized Equations in Computation of Fluid-Structure Interactions With the Space-Time Formulations
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 5743
–5753
. 37.
Khurram
, R. A.
, and Masud
, A.
, 2006, “A Multiscale/Stabilized Formulation of the Incompressible Navier-Stokes Equations for Moving Boundary Flows and Fluid-Structure Interaction
,” Comput. Mech.
, 38
, pp. 403
–416
. 38.
Tezduyar
, T. E.
, 2007,”Finite Elements in Fluids: Stabilized Formulations and Moving Boundaries and Interfaces
,” Comput. Fluids
, 36
, pp. 191
–206
. 39.
Sawada
, T.
, and Hisada
, T.
, 2007, “Fluid-Structure Interaction Analysis of the Two Dimensional Flag-in-Wind Problem by an Interface Tracking ALE Finite Element Method
,” Comput. Fluids
, 36
, pp. 136
–146
. 40.
Tezduyar
, T. E.
, and Sathe
, S.
, 2007, “Modeling of Fluid-Structure Interactions With the Space-Time Finite Elements: Solution Techniques
,” Int. J. Numer. Methods Fluids
, 54
, pp. 855
–900
. 41.
Takizawa
, K.
, Yabe
, T.
, Tsugawa
, Y.
, Tezduyar
, T. E.
, and Mizoe
, H.
, 2007, “Computation of Free-Surface Flows and Fluid-Object Interactions With the CIP Method Based on Adaptive Meshless Soroban Grids
,” Comput. Mech.
, 40
pp. 167
–183
. 42.
Takizawa
, K.
, Tanizawa
, K.
, Yabe
, T.
, and Tezduyar
, T. E.
, 2007, “Ship Hydrodynamics Computations With the CIP Method Based on Adaptive Soroban Grids
,” Int. J. Numer. Methods Fluids
, 54
, pp. 1011
–1019
. 43.
Yabe
, T.
, Takizawa
, K.
, Tezduyar
, T. E.
, and Im
, H.-N.
, 2007, “Computation of Fluid-Solid and Fluid-Fluid Interfaces with the CIP Method Based on Adaptive Soroban Grids - An Overview
,” Int. J. Numer. Methods Fluids
, 54
, pp. 841
–853
. 44.
Manguoglu
, M.
, Sameh
, A. H.
, Tezduyar
, T. E.
, and Sathe
, S.
, 2008, “A Nested Iterative Scheme for Computation of Incompressible Flows in Long Domains
,” Comput. Mech.
, 43
, pp. 73
–80
. 45.
Tezduyar
, T. E.
, Sathe
, S.
, Pausewang
, J.
, Schwaab
, M.
, Christopher
, J.
, and Crabtree
, J.
, 2008, “Interface Projection Techniques for Fluid-Structure Interaction Modeling with Moving-Mesh Methods
,” Comput. Mech.
, 43
, pp. 39
–49
. 46.
Tezduyar
, T. E.
, Sathe
, S.
, Pausewang
, J.
Schwaab
, M.
, Christopher
, J.
, and Crabtree
, J.
, 2008, “Fluid-Structure Interaction Modeling of Ringsail Parachutes
,” Comput. Mech.
, 43
, pp. 133
–142
. 47.
Sathe
, S.
, and Tezduyar
, T. E.
, 2008, “Modeling of Fluid-Structure interactions with the Space-Time Finite Elements: Contact Problems
,” Comput. Mech.
, 43
, pp. 51
–60
. 48.
Dettmer
, W. G.
, and Peric
, D.
, 2008, “On the Coupling Between Fluid Flow and Mesh Motion in the Modelling of Fluid-Structure Interaction
,” Comput. Mech.
, 43
, pp. 81
–90
. 49.
Manguoglu
, M.
, Takizawa
, K.
, Sameh
, A. H.
, and Tezduyar
, T. E.
, 2010, “Solution of Linear Systems in Arterial Fluid Mechanics Computations with Boundary Layer Mesh Refinement
,” Comput. Mech.
, 46
pp. 83
–89
. 50.
Tezduyar
, T. E.
, Takizawa
, K.
, Moorman
, C.
, Wright
, S.
, and Christopher
, J.
, 2010, “Space-Time Finite Element Computation of Complex Fluid-Structure Interactions
,” Int. J. Num. Methods Fluids
, 64
, pp. 1201
–1218
. 51.
Takizawa
, K.
, Moorman
, C.
, Wright
, S.
, Spielman
, T.
, and Tezduyar
, T. E.
, 2011, “Fluid-Structure Interaction Modeling and Performance Analysis of the Orion Spacecraft Parachutes
,” Int. J. Numer. Methods Fluids
, 65
pp. 271
–285
. 52.
Takizawa
, K.
, Wright
, S.
, Moorman
, C.
, and Tezduyar
, T. E.
, 2011, “Fluid-Structure Interaction Modeling of Parachute Clusters
,” Int. J. Numer. Methods Fluids
, 65
, pp. 286
–307
. 53.
Manguoglu
, M.
, Takizawa
, K.
, Sameh
, A. H.
, and Tezduyar
, T. E.
, 2011, “Nested and Parallel Sparse Algorithms for Arterial Fluid Mechanics Computations with Boundary Layer Mesh Refinement
,” Int. J. Numer. Methods Fluids
, 65
, pp. 135
–149
. 54.
Takizawa
, K.
, and Tezduyar
, T. E.
, 2011, “Multiscale Space-Time Fluid-Structure Interaction Techniques
,” Comput. Mech.
, 48
, pp. 247
–267
.55.
Takizawa
, K.
, Spielman
, T.
, and Tezduyar
, T. E.
, 2011, “Space-Time FSI Modeling and Dynamical Analysis of Spacecraft Parachutes and Parachute Clusters
,” Comput. Mech.
, 48
, pp. 345
–364
.56.
Tezduyar
, T. E.
, 1992, “Stabilized Finite Element Formulations for Incompressible Flow Computations
,” Adv. Appl. Mech.
, 28
, pp. 1
–44
. 57.
Tezduyar
, T. E.
, 2003, “Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,” Int. J. Numer. Methods Fluids
, 43
, pp. 555
–575
. 58.
Brooks
, A. N.
, and Hughes
, T. J. R.
, 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations
,” Comput. Methods Appl. Mech. Eng.
, 32
, pp. 199
–259
. 59.
Saad
, Y.
and Schultz
, M.
, 1986, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,” SIAM Journal of Scientific and Statistical Computing
, 7
, pp. 856
–869
.60.
Tezduyar
, T. E.
, Cragin
, T.
, Sathe
, S.
and Nanna
, B.
, 2007, “FSI Computations in Arterial Fluid Mechanics with Estimated Zero-Pressure Arterial Geometry
,” Marine
2007, E.
Onate
, J.
Garcia
, P.
Bergan
, and T.
Kvamsdal
, eds., CIMNE
, Barcelona, Spain
.61.
Hsu
, M.-C.
, Bazilevs
, Y.
, 2011, “Blood Vessel Tissue Prestress Modeling for Vascular Fluid-Structure Interaction Simulations
,” Finite Elements in Analysis and Design
, 47
, pp. 593
–599
.62.
Macdonald
, D. J.
, Finlay
, H. M.
, and Canham
, P. B.
, 2000, “Directional Wall Strength in Saccular Brain Aneurysms from Polarized Light Microscopy
,” Ann. Biomed. Eng.
, 28
, pp. 533
–542
. Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.